Research Article

On the Stability of Quadratic Functional Equation

by  Sushma
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 110 - Issue 16
Published: January 2015
Authors: Sushma
10.5120/19405-1057
PDF

Sushma . On the Stability of Quadratic Functional Equation. International Journal of Computer Applications. 110, 16 (January 2015), 41-45. DOI=10.5120/19405-1057

                        @article{ 10.5120/19405-1057,
                        author  = { Sushma },
                        title   = { On the Stability of Quadratic Functional Equation },
                        journal = { International Journal of Computer Applications },
                        year    = { 2015 },
                        volume  = { 110 },
                        number  = { 16 },
                        pages   = { 41-45 },
                        doi     = { 10.5120/19405-1057 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2015
                        %A Sushma
                        %T On the Stability of Quadratic Functional Equation%T 
                        %J International Journal of Computer Applications
                        %V 110
                        %N 16
                        %P 41-45
                        %R 10.5120/19405-1057
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper the stability of quadratic functional equation, f(xy)+f(xy-1)=2f(x)+2f(y) on class of groups is obtained and also prove that quadratic functional equation may not be stable in any abelian group.

References
  • Aoki,T. , (1950) "On stability of the linear transformation in Banach spaces," Journal of the Mathematical Society of Japan, 2,64-66
  • Chang, S. and Kim,H. M. , (2002), On the Hyer-Ulam stability of a quadratic functional equations, J. Ineq. Appl. Math. , 33, 1-12.
  • Chang,S. , Lee,E. H. and Kim,H. M. , (2003)On the Hyer-Ulam Rassias stability of a quadratic functional equations, Math. Ineq. Appl. Math. , 6(1), 87-95.
  • Cholewa,P. W (1984) Remarks on the stability of functional equations, Aequationes Math. , 27, 76-86.
  • Czerwik,S. , (1992),On the stability of a quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg. ,62, 59-64.
  • Gavruta,P. , (1994) A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , 184,431-436.
  • Gruber,P. M. , (1978), Stability of isometries, Trans. Amer. Math. Soc. 245, 263-277.
  • Hyers,D. H. and Rassias,T. M. , (1992) Approximate homomorphism, Aequationes Math. , 44,125-153.
  • Hyers,D. H. , Isac, G. , and Rassias, Th. M. , (1998), Stability of functional equations in several variables, Birkhauser Basel.
  • Hyers,D. H. , (1941) On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. , 27, 222-223.
  • Hyers,D. H. , Isac, G. and Rassias,Th. M. , (1998) On the asymptotically of Hyer-Ulam stability of mappings, Proc. Amer. Math. Soc. , 126),425-430.
  • Jang,S. Y. , Lee,J. R. , Park,C. and Shin,D. Y. , (2009)Fuzzy stability of Jensen-type Quadratic functional equations, Abstract and Applied Analysis, pp-17.
  • Mirzavaziri,M. and Moslehian,M. S. , A fixed point approach to stability of Quadratic equation, arXivimath/0512007v1 [math. FA] 1 Dec 2005.
  • Rassias,T. M. , (1978) On stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, 297-300.
  • SKOF,F. , (1983) Proprieta localie approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53, 113-129
  • Ulam,S. M. , (1960) A collection of Mathematical Problems, Interscience tracts in Pure and Applied Mathematics, U. S. A 16.
  • Ulam,S. M. , 1963, Problems in Modern Mathematics, John Wiley & Sons, New York, USA,.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Quadratic functional equation pseudo-quadratic mapping Banach space quasi-quadratic mapping

Powered by PhDFocusTM