Research Article

Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups

by  Emrah Mustuoglu, Aslihan Sezgin, Zeynep Kaya Turk
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 155 - Issue 10
Published: Dec 2016
Authors: Emrah Mustuoglu, Aslihan Sezgin, Zeynep Kaya Turk
10.5120/ijca2016912412
PDF

Emrah Mustuoglu, Aslihan Sezgin, Zeynep Kaya Turk . Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups. International Journal of Computer Applications. 155, 10 (Dec 2016), 1-8. DOI=10.5120/ijca2016912412

                        @article{ 10.5120/ijca2016912412,
                        author  = { Emrah Mustuoglu,Aslihan Sezgin,Zeynep Kaya Turk },
                        title   = { Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups },
                        journal = { International Journal of Computer Applications },
                        year    = { 2016 },
                        volume  = { 155 },
                        number  = { 10 },
                        pages   = { 1-8 },
                        doi     = { 10.5120/ijca2016912412 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2016
                        %A Emrah Mustuoglu
                        %A Aslihan Sezgin
                        %A Zeynep Kaya Turk
                        %T Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups%T 
                        %J International Journal of Computer Applications
                        %V 155
                        %N 10
                        %P 1-8
                        %R 10.5120/ijca2016912412
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we first give the definition of soft uni-product and characterize soft uni-groups as regards this definition and we prove a number of results and give some alternative formulations about soft uni-groups by using the the concepts of normal soft uni-subgroups, characteristic soft uni-groups, conjugate soft uni-groups, soft normalizer and commutator of a group, which are analogs of significant results in group theory.

References
  • L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.
  • L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci. 172 (2005) 1-40.
  • Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982) 341-356.
  • Z. Pawlak, A. Skowron, Rudiments of rough sets, Inform. Sci. 177 (2007) 3-27.
  • W.L. Gau, D. J. Buehrer, Vague sets, IEEE Tran. Syst. Man Cybern. 23 (2) (1993) 610-614.
  • M.B. Gorzalzany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Set Syst. 21 (1987) 1-17.
  • K. Atanassov, Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst. (64) (1994) 159-174.
  • K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. (20) (1986) 87-96.
  • L. Zhou, W.Z. Wu, On generalized intuitionistic fuzzy rough approximation opeartors, Inform. Sci. 178 (11) (2008) 2448- 2465.
  • D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31.
  • P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
  • M.I. Ali, F. Feng, X. Liu,W.K. Min, On some new operations in soft set theory, Comput. Math. Appl. 57 (9) (2009) 1547- 1553.
  • N. C¸ a˜gman and S. Engino?glu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207 (2010) 848-855.
  • F. Feng, W. Pedrycz, On scalar products and decomposition theorems of fuzzy soft sets, Journal of Multi-valued Logic and Soft Computing, 2015, 25(1), 45-80.
  • F. Feng, J. Cho, W. Pedrycz, H. Fujita, T. Herawan, Soft set based association rule mining, Knowledge-Based Systems, 2016, 111, 268-282.
  • X. Ma, J. Zhan, Applications of soft intersection set theory to h-hemiregular and h-semisimple hemirings, J. of Mult.- Valued Logic and Soft Computing, 25(2015) 105124
  • J. Zhan, B. Yu, V. Fotea, Characterizations of two kinds of hemirings based on probability spaces, Soft Comput, 20(2016), 637648.
  • A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
  • W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set Syst., 8 (1982) 133-139.
  • W. N. Dixit, R. Kumar and N. Ajmal, On fuzzy rings, Fuzzy Set Syst., 49 (1992) 205-213.
  • H.K. Saikia, L.K. Barthakur, On fuzzy N-subgroups of fuzzy ideals of near-rings and near-ring groups, J. Fuzzy Math. 11 (2003) 567-580.
  • K.H. Kim, Y.B. Jun, On fuzzy ideals of near-rings, Bull. Korean Math. Soc. 33 (1996) 593-601.
  • S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Set Syst., 44 (1991) 139-146.
  • B. Davvaz, Fuzzy ideals of near-rings with interval-valued membership functions, J. Sci. I. Iran. 12 (2001) 171-175.
  • N. C¸ a?gman, F. C¸ itak and H. Aktas¸, Soft int-groups and its applications to group theory, Neural Comput. Appl., DOI: 10.1007/s00521-011-0752-x.
  • K. Kaygisiz, On soft int-groups, Annals of Fuzzy Mathematics and Informatics, Volume 4, No. 2, (October 2012), 365- 375
  • E. Mus¸tuo?glu, A. Sezgin, Z. K. T¨urk, N. C¸ a?gman, A.O. Atag¨un, Soft uni-group and its applications to group theory, submitted.
  • A. Sezgin, A new approach to semigoup theory I; Soft union semigroup, ideals and bi-ideals , Algebra Letters, Vol 2016 (2016), Article ID 3.
  • A. Sezgin Sezer, A new view to ring theory via soft union rings, ideals and bi-ideals, Knowledge-Based Systems, 36, 2012, December, 300-314.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Soft sets soft uni-groups soft uni-product normal soft unisubgroups characteristic soft uni-groups conjugate soft unigroups soft normalizer of a soft set.

Powered by PhDFocusTM