Research Article

AI Driven Smart Healthcare: A Comprehensive Survey of Data Collection, IoT Enabled Sensing, 5G/6G Communications and Deep Learning for Early Diagnosis

by  Qurat Ul Ain, Rameez Asif
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 39
Published: September 2025
Authors: Qurat Ul Ain, Rameez Asif
10.5120/ijca2025925689
PDF

Qurat Ul Ain, Rameez Asif . AI Driven Smart Healthcare: A Comprehensive Survey of Data Collection, IoT Enabled Sensing, 5G/6G Communications and Deep Learning for Early Diagnosis. International Journal of Computer Applications. 187, 39 (September 2025), 47-57. DOI=10.5120/ijca2025925689

                        @article{ 10.5120/ijca2025925689,
                        author  = { Qurat Ul Ain,Rameez Asif },
                        title   = { AI Driven Smart Healthcare: A Comprehensive Survey of Data Collection, IoT Enabled Sensing, 5G/6G Communications and Deep Learning for Early Diagnosis },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 39 },
                        pages   = { 47-57 },
                        doi     = { 10.5120/ijca2025925689 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Qurat Ul Ain
                        %A Rameez Asif
                        %T AI Driven Smart Healthcare: A Comprehensive Survey of Data Collection, IoT Enabled Sensing, 5G/6G Communications and Deep Learning for Early Diagnosis%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 39
                        %P 47-57
                        %R 10.5120/ijca2025925689
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The healthcare sector continues to face significant challenges in disease prediction, with late diagnoses exposing limitations in existing systems. Artificial Intelligence (AI) has emerged as a transformative force, reshaping patient data management, diagnostic processes, and treatment strategies. AI-enabled healthcare systems optimize diagnostic processes leveraging machine learning (ML) and deep learning (DL) techniques to optimize diagnostics and decision-making. Data collection—often driven by wireless sensors and IoT-enabled healthcare devices—serves as a critical foundation for training these models. In this paper, we first present an overview of AI applications in healthcare, focusing on data acquisition, IoT-based sensing, and the role of 5G and 6G communications in enabling real-time healthcare services. We then explore system recommendation frameworks and CNN-based image captioning models for medical imaging analysis. The role of deep neural networks (DNNs) in powering smart healthcare systems is discussed in detail, alongside the potential of Software Defined Radio (SDR) technology for monitoring respiratory diseases. We also examine the use of Intelligent Reflecting Surfaces (IRS) to enhance wireless communication reliability in medical environments. Finally, we highlight key challenges and ethical considerations in the design and deployment of AI-driven smart healthcare systems.

References
  • R. F. Mansour, A. El Amraoui, I. Nouaouri, V. G. DIa, D. Gupta, and S. Kumar. 2021. Artificial intelligence and Internet of Things enabled disease diagnosis model for smart healthcare systems. IEEE Access 8 (2021), 45137–45146.
  • U. Saeed, D. Zheng, B. A. Shah, S. I. Shah, S. U. Jan, J. Ahmad, Q. H. Abbasi, S. A. Shah, and W. Boulila. 2023. Contactless breathing waveform detection through RF sensing: Radar vs. Wi-Fi techniques. In Proceedings of the 2023 IEEE Tenth International Conference on Communications and Networking (ComNet), Hammamet, Tunisia, November 1–3, 2023. IEEE, 1–6.
  • A. Selivanov, O. Y. Rogov, D. Chesakov, A. Shelmanov, I. Fedulova, and D. V. Dylov. 2023. Medical image captioning via generative pretrained transformers. Scientific Reports 13 (2023), 1–12.
  • B. Pradhan, S. Das, D. S. Roy, S. Routray, F. Benedetto, and R. H. Jhaveri. 2023. An AI-assisted smart healthcare system using 5G communication. IEEE Access 11 (2023), 108339–108355.
  • I. D. Apostolopoulos, S. I. Aznaouridis, and M. A. Tzani. 2020. Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases. Journal of Medical and Biological Engineering 40 (2020), 462–469.
  • J. Janes, A. Bansal, and T. Baron. 2022. Exploring AI in healthcare: How the acceleration of data processing can impact life-saving diagnoses. In Proceedings of the Symposium on Open Data and Knowledge for a Post-Pandemic Era (ODAK ’22). BCS Learning & Development, UK, 1–6.
  • S. Ashique, N. Mishra, S. Mohanto, A. Garg, F. Taghizadeh-Hesary, B. H. J. Gowda, and D. K. Chellappan. 2024. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects. Heliyon (2024).
  • P. Wijesinghe and A. Bollig-Fischer. 2016. Lung cancer and personalized medicine. In A. Ahmad and S. Gadgeel (Eds.), Springer International Publishing AG, Switzerland, 9–25.
  • Z. Xie, H. Wang, S. Han, E. Schoenfeld, and F. Ye. 2022. DeepVS: A deep learning approach for RF-based vital signs sensing. In Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (BCB ’22). Association for Computing Machinery, 1–6.
  • F. Getnet, M. Demissie, N. Assefa, B. Mengistie, and A. Worku. 2017. Delay in diagnosis of pulmonary tuberculosis in low- and middle-income settings: Systematic review and meta-analysis. BMC Pulmonary Medicine 17 (2017), 202.
  • A. Priyanka, M. Parimala, K. Sudheer, Thippareddy, R. Kaluri, K. Lakshmanna, and M. Praveen Kumar Reddy. 2017. BIG data based on healthcare analysis using IoT devices. In IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing, 1–6.
  • M. Rehman, N. A. Abu Ali, R. A. Shah, M. B. Khan, S. A. Shah, A. Alomainy, X. Yang, M. A. Imran, and Q. H. Abbasi. 2022. Development of an intelligent real-time multiperson respiratory illnesses sensing system using SDR technology. IEEE Sensors Journal 22 (2022), 18858–18869.
  • K. Kurapati. 2022. Proactive and intelligent healthcare management using IoT. In Proceedings of IEEE International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI 2022). IEEE, 1–6.
  • J. S. Jeong, O. Han, and Y. Y. A. You. 2016. Design characteristics of smart healthcare system as the IoT application. Indian Journal of Science and Technology 9, 37 (2016).
  • U. Saeed, S. Y. Shah, J. Ahmad, M. A. Imran, Q. H. Abbasi, and S. A. Shah. 2021. Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review. Journal of Pharmaceutical Analysis, 193–204.
  • T. M. Ghazal, M. K. Hasan, M. T. Alshurideh, H. M. Alzoubi, M. Ahmad, S. S. Akbar, B. Al Kurdi, and I. A. Akour. 2021. IoT for smart cities: Machine learning approaches in smart healthcare—a review. Future Internet (2021).
  • M. M. El Khatib and G. Ahmed. 2019. Management of artificial intelligence enabled smart wearable devices for early diagnosis and continuous monitoring of CVDS. International Journal of Innovative Technology and Exploring Engineering 9, 1 (2019), 1211–1215.
  • B. Ahmed, M. Shuja, H. M. Mishra, A. Qtaishat, and M. Kumar. 2023. IoT based smart systems using artificial intelligence and machine learning: Accessible and intelligent solutions. In 2023 6th International Conference on Information Systems and Computer Networks (ISCON 2023). IEEE, 1–6.
  • A. K. Munnangi, S. UdhayaKumar, V. Ravi, R. Sekaran, and S. Kannan. 2023. Survival study on deep learning techniques for IoT enabled smart healthcare system. Health and Technology 13, 2 (2023), 215–228.
  • M. Javaid, A. Haleem, R. Pratap Singh, R. Suman, and S. Rab. 2022. Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks 3 (2022), 58–73.
  • V. Bhatt and S. Chakraborty. 2021. Real-time healthcare monitoring using smart systems: A step towards healthcare service orchestration smart systems for futuristic healthcare. In Proceedings of International Conference on Artificial Intelligence and Smart Systems (ICAIS 2021). IEEE, 772–777.
  • C. H. Huang, C. Zeng, Y. C. Wang, H. Y. Peng, C. S. Lin, C. J. Chang, and H. Y. Yang. 2018. A study of diagnostic accuracy using a chemical sensor array and a machine learning technique to detect lung cancer. Sensors 18, 9 (2018).
  • B. Mohanta, P. Das, and S. Patnaik. 2019. Healthcare 5.0: A paradigm shift in digital healthcare system using artificial intelligence, IoT and 5G communication. In Proceedings of 2019 International Conference on Applied Machine Learning (ICAML 2019). IEEE, 191–196.
  • A. Kishor and C. Chakraborty. 2022. Artificial intelligence and Internet of Things based healthcare 4.0 monitoring system. Wireless Personal Communications 127, 2 (2022), 1615–1631.
  • R. Raina and R. K. Jha. 2022. Intelligent and interactive healthcare system (I2HS) using machine learning. IEEE Access 10 (2022), 116402–116424.
  • Alamsyah, M. Subito, M. Ikhlayel, and E. Setijadi. 2020. Internet of Things-based vital sign monitoring system. International Journal of Electrical and Computer Engineering 10, 6 (2020), 5891–5898.
  • M. B. Khan, M. Rehman, A. Mustafa, R. A. Shah, and X. Yang. 2021. Intelligent non-contact sensing for connected health using software defined radio technology. Electronics 10, 13 (2021).
  • M. Gupta, S. Tanwar, A. Rana, and H. Walia. 2021. Smart healthcare monitoring system using wireless body area network. In 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO 2021). IEEE, 1–6.
  • A. Verma, G. Agarwal, A. K. Gupta, and M. Sain. 2021. Novel hybrid intelligent secure cloud Internet of Things based disease prediction and diagnosis. Electronics (2021).
  • H. M. Mohan, S. Anitha, R. Chai, and S. H. Ling. 2021. Edge artificial intelligence: Real-time noninvasive technique for vital signs of myocardial infarction recognition using Jetson Nano. Advances in Human-Computer Interaction (2021).
  • J. M. Kwon, Y. Y. Jo, S. Y. Lee, S. Kang, S. Y. Lim, M. S. Lee, and K. H. Kim. 2022. Artificial intelligence-enhanced smartwatch ECG for heart failure-reduced ejection fraction detection by generating 12-lead ECG. Diagnostics 12, 3 (2022).
  • G. Pachauri and S. Sharma. 2015. Anomaly detection in medical wireless sensor networks using machine learning algorithms. In Procedia Computer Science 70 (2015), 325–333.
  • A. Adhikari, A. Hetherington, and S. Sur. 2021. MmFlow: Facilitating at-home spirometry with 5G smart devices. In Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks workshops. IEEE, 1–6.
  • Q. O. Hangaw, K. Abdulqadir, and M. Wrya. 2016. Smart patient management, monitoring and tracking system using radio-frequency identification (RFID) technology. In 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 1–6.
  • T. Wang, L. Qiu, A. K. Sangaiah, A. Liu, M. Z. A. Bhuiyan, and Y. Ma. 2020. Edge-computing-based trustworthy data collection model in the Internet of Things. IEEE Internet of Things Journal 7, 5 (2020), 4218–4227.
  • K. H. Zou and J. Z. Li. 2022. Enhanced patient-centricity: How the biopharmaceutical industry is optimizing patient care through AI/ML/DL. Healthcare (2022).
  • A. Prinz, P. Menschner, A. Maier, T. Holm, T. Meyer, and J. M. Leimeister. 2012. Electronic data capture in healthcare-NFC as easy way for self-reported health status information. Health Policy and Technology, 137–144.
  • J. Iqbal, D. C. Jaimes, P. Makineni, S. Subramani, S. Hemaida, T. R. Thugu, A. N. Butt, J. T. Sikto, P. Kaur, M. A. Lak, and M. Augustine. 2023. Reimagining healthcare: Unleashing the power of artificial intelligence in medicine. Cureus 15, 9 (2023).
  • N. AbuAli, M. B. Khan, F. Ullah, M. Hayajneh, H. Ullah, and S. Mumtaz. 2024. Software defined radio frequency sensing framework for Internet of Medical Things. Information Fusion 103 (2024).
  • B. Dharangan, J. Praveen, M. Selva Chandru, S. Rajagopal, and B. Jegajothi. 2022. Secure cloud-based e-health system using advanced encryption standard. In 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC 2022). IEEE, 642–646.
  • S. Das and S. Namasudra. 2022. A lightweight and anonymous mutual authentication scheme for medical big data in distributed smart healthcare systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2022).
  • N. T. Van, L. Tang, A. Singh, N. D. Minh, S. C. Mukhopadhyay, and S. F. Hasan. 2019. Self-identification respiratory disorder based on continuous wave radar sensor system. IEEE Access 7 (2019), 40019–40026.
  • S. Gonem, W. Janssens, N. Das, and M. Topalovic. 2020. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax (2020), 695–701.
  • U. Saeed, S. Y. Shah, A. Zahid, J. Ahmad, M. A. Imran, Q. H. Abbasi, and S. A. Shah. 2021. Wireless channel modelling for identifying six types of respiratory patterns with SDR sensing and deep multilayer perceptron. IEEE Sensors Journal 21, 18 (2021), 20833–20840.
  • F. Jamil, S. Ahmad, N. Iqbal, and D. H. Kim. 2020. Towards a remote monitoring of patient vital signs based on IoT-based blockchain integrity management platforms in smart hospitals. Sensors 20, 8 (2020).
  • T. Hai, M. Z. A. Bhuiyan, J. Wang, T. Wang, D. F. Hsu, Y. Li, S. Q. Salih, J. Wu, and P. Liu. 2020. Depend data: Data collection dependability through three-layer decision-making in BSNs for healthcare monitoring. Information Fusion 62 (2020), 32–46.
  • B. Alhayani, A. S. Kwekha-Rashid, H. B. Mahajan, H. Ilhan, N. Uke, A. Alkhayyat, and H. J. Mohammed. 2023. 5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: Perspective of smart healthcare system. Applied Nanoscience 13, 3 (2023), 1807–1817.
  • V. Lesch, M. Züfle, A. Bauer, L. Iffländer, C. Krupitzer, and S. Kounev. 2023. A literature review of IoT and CPS—what they are, and what they are not. Journal of Systems and Software 200 (2023).
  • T. Lynn, J. G. Mooney, B. Lee, P. Patricia, and T. Endo. 2020. The cloud-to-thing continuum: Opportunities and challenges in cloud, fog and edge computing. (2020).
  • H. Wu, S. Yang, Z. Huang, J. He, and X. Wang. 2018. Type 2 diabetes mellitus prediction model based on data mining. Informatics in Medicine Unlocked 10 (2018), 100–107.
  • B. Manuel, U. Pilueta Nino, and F. Moises Jardiniano. 2019. VITAL APP: Development and user acceptability of an IoT-based patient monitoring device for synchronous measurements of vital signs. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE, 1–6.
  • D. Y. Lie, Y. Liu, Y. Tchatchoua, C. Sweeney, P. E. Lie, and T. Q. Nguyen. 2020. Latest development on non-contact vital signs (NCVS) sensor systems using software defined radio (SDR). In IEEE 14th International Conference on ASIC (ASICON). IEEE, 1–6.
  • R. Kashef. 2020. Enhancing the role of large-scale recommendation systems in the IoT context. IEEE Access 8 (2020), 178248–178257.
  • H. Hamidi. 2019. An approach to develop the smart health using Internet of Things and authentication based on biometric technology. Future Generation Computer Systems 91 (2019), 434–449.
  • M. Jamshidi, A. Lalbakhsh, J. Talla, Z. Peroutka, F. Hadjilooei, P. Lalbakhsh, M. Jamshidi, L. La Spada, M. Mirmozafari, M. Dehghani, and A. Sabet. 2020. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access 8 (2020), 109581–109595.
  • R. Singh, A. D. Dwivedi, G. Srivastava, P. Chatterjee, and J. C. W. Lin. 2022. A privacy preserving Internet of Things smart healthcare financial system. IEEE Internet of Things Journal (2022).
  • Q. Cai, H. Wang, Z. Li, and X. Liu. 2019. A survey on multimodal data-driven smart healthcare systems: Approaches and applications. IEEE Access 7 (2019), 133583–133599.
  • M. Javaid, A. Haleem, S. Rab, R. Pratap Singh, and R. Suman. 2021. Sensors for daily life: A review. Sensors International. KeAi Communications Co. (2021).
  • A. N. Bahache and N. Chikouche. 2021. A comparative analysis of RFID authentication protocols for healthcare applications. In 2021 Proceedings of the International Conference on Artificial Intelligence for Cyber Security Systems and Privacy. IEEE, 1–6.
  • F. Alshehri and G. Muhammad. 2021. A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access 9 (2021), 3660–3678.
  • A. Al-Wahedi, M. Al-Shams, M. A. Albettar, S. Alawsh, and A. Muqaibel. 2019. Wireless monitoring of respiration and heart rates using software-defined-radio. In 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 1–6.
  • A. V. Singh, M. H. D. Ansari, D. Rosenkranz, R. S. Maharjan, F. L. Kriegel, K. Gandhi, A. Kanase, R. Singh, P. Laux, and A. Luch. 2020. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Advanced Healthcare Materials (2020).
  • M. E. Hameed, M. M. Ibrahim, N. A. Manap, and M. L. Attiah. 2019. Comparative study of several operation modes of AES algorithm for encryption ECG biomedical signal. International Journal of Electrical and Computer Engineering 9, 6 (2019), 4850–4859.
  • J. Bauer, M. N. Hoq, J. Mulcahy, S. A. M. Tofail, F. Gulshan, C. Silien, H. Podbielska, and M. M. Akbar. 2020. Implementation of artificial intelligence and non-contact infrared thermography for prediction and personalized automatic identification of different stages of cellulite. EPMA Journal 11, 1 (2020), 17–29.
  • R. Ramya Devi and V. Vijaya Chamundeeswari. 2020. Triple DES: Privacy preserving in big data healthcare. International Journal of Parallel Programming 48, 3 (2020), 515–533.
  • J. Y. Oh, D. Il Yang, and K. H. Chon. 2010. A selective encryption algorithm based on AES for medical information. Healthcare Informatics Research 16, 1 (2010), 22–29.
  • S. Yoon, J. K. Sim, and Y. H. Cho. 2016. A flexible and wearable human stress monitoring patch. Scientific Reports 6 (2016).
  • H. Kim, J. Song, S. Kim, S. Lee, Y. Park, S. Lee, S. Lee, and J. Kim. 2023. Recent advances in multiplexed wearable sensor platforms for real-time monitoring lifetime stress: A review. Biosensors (2023).
  • Y. Y. Broza, X. Zhou, M. Yuan, D. Qu, Y. Zheng, R. Vishinkin, M. Khatib, W. Wu, and H. Haick. 2019. Disease detection with molecular biomarkers: From chemistry of body fluids to nature-inspired chemical sensors. Chemical Reviews 117 (2019), 11761–11817.
  • M. Chen, D. Cui, H. Haick, and N. Tang. 2024. Artificial intelligence‐based medical sensors for healthcare system. Advanced Sensor Research 3, 3 (2024).
  • J. Xu, Y. Zhang, J. Jiang, and J. Kan. 2019. An energy balance clustering routing protocol for intra-body wireless nanosensor networks. Sensors 19, 22 (2019).
  • T. Rashid, S. Kumar, A. Verma, P. R. Gautam, and A. Kumar. 2020. Co-REERP: Cooperative reliable and energy efficient routing protocol for intra body sensor network (Intra-WBSN). Wireless Personal Communications 114, 2 (2020), 927–948.
  • F. Afsana, M. Asif-Ur-Rahman, M. R. Ahmed, M. Mahmud, and M. Shamim Kaiser. 2018. An energy conserving routing scheme for wireless body sensor nanonetwork communication. IEEE Access 6 (2018), 9186–9200.
  • B. Chen, S. Qia, J. Zhao, D. Liu, X. Shi, M. Lyu, H. Chen, H. Lu, and Y. Zhai. 2021. A security awareness and protection system for 5G smart healthcare based on zero-trust architecture. IEEE Internet of Things Journal 8, 13 (2021), 10248–10263.
  • V. Mohanakurup, V. S. Baghela, S. Kumar, P. K. Srivastava, N. V. Doohan, M. Soni, and H. Awal. 2022. 5G cognitive radio networks using reliable hybrid deep learning based on spectrum sensing. Wireless Communications and Mobile Computing 2022 (2022).
  • I. Ahmed, M. Anisetti, A. Ahmad, and G. Jeon. 2023. A multilayer deep learning approach for malware classification in 5G-enabled IIoT. IEEE Transactions on Industrial Informatics 19, 2 (2023), 1495–1503.
  • U. Sakthi, A. Alasmari, S. P. Girija, P. Senthil, S. Qamar, and S. Hariharasitaraman. 2024. Smart healthcare based cyber physical system modeling by blockchain with cloud 6G network and machine learning techniques. Wireless Personal Communications (2024).
  • H. Thanganadar, S. M. Yaseen, S. K. Shukla, A. S. Bist, S. N. Shavkatovich, and P. Vijayakumar. 2024. 6G wireless communication cyber physical system based smart healthcare using quantum optimization with machine learning. Wireless Personal Communications (2024).
  • H. Han, J. Yao, Y. Wu, Y. Dou, J. Fu. 2024. Quantum communication based cyber security analysis using artificial intelligence with IoMT. Optical and Quantum Electronics 56, 4 (2024).
  • S. Manoharan and Prof. Sathish. 2020. Patient diet recommendation system using K clique and deep learning classifiers. Journal of Artificial Intelligence and Capsule Networks 2, 2 (2020), 121–130.
  • P. Nagaraj, V. Muneeswaran, K. Muthamil Sudar, A. N. Vardhan Reddy, G. Deshik, and C. C. K. Reddy. 2022. Ensemble machine learning (grid search & random forest) based enhanced medical expert recommendation system for diabetes mellitus prediction. In 3rd International Conference on Electronics and Sustainable Communication Systems, ICESC 2022 – Proceedings. IEEE, 757–765.
  • P. Kumar and A. Kumar. 2022. A review of healthcare recommendation systems using several categories of filtering and machine learning-based methods. In 3rd IEEE 2022 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2022. IEEE, 762–768.
  • C. Iwendi, S. Khan, J. H. Anajemba, A. K. Bashir, F. Noor. 2020. Realizing an efficient IoMT-assisted patient diet recommendation system through machine learning model. IEEE Access 8 (2020), 28462–28474.
  • B. Ihnaini, M. A. Khan, T. A. Khan, S. Abbas, M. S. Daoud, M. Ahmad, and M. A. Khan. 2021. A smart healthcare recommendation system for multidisciplinary diabetes patients with data fusion based on deep ensemble learning. Computational Intelligence and Neuroscience (2021).
  • M. Usha, N. Singla, and G. Gupta. 2020. Recommender system with machine learning and artificial intelligence: Practical tools and applications in medical, agricultural and other industries. Scrivener Publishing LLC (2020).
  • U. A. Bhatti, M. Huang, D. Wu, Y. Zhang, A. Mehmood, and H. Han. 2019. Recommendation system using feature extraction and pattern recognition in clinical care systems. Enterprise Information Systems 13, 3 (2019), 329–351.
  • M. Kuanr, P. Mohapatra, S. Mittal, M. Maindarkar, M. M. Fouda, L. Saba, and J. S. Suri. 2022. Recommender system for the efficient treatment of COVID-19 using a convolutional neural network model and image similarity. Diagnostics 12, 11 (2022).
  • J. Bobadilla, F. Ortega, A. Gutiérrez, and S. Alonso. 2020. Classification-based deep neural network architecture for collaborative filtering recommender systems. International Journal of Interactive Multimedia and Artificial Intelligence 6, 1 (2020), 68–77.
  • R. L. Rosa, G. M. Schwartz, W. V. Ruggiero, and D. Z. Rodriguez. 2019. A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Transactions on Industrial Informatics 15, 4 (2019), 2124–2135.
  • R. Oruche, V. Gundlapalli, A. P. Biswal, P. Calyam, M. L. Alarcon, Y. Zhang, N. R. Bhamidipati, A. Malladi, and H. Regunath. 2021. Evidence-based recommender system for a COVID-19 publication analytics service. IEEE Access 9 (2021), 79400–79415.
  • S. A. Gagangeet, N. Kumar, N. S., and M. O. 2019. DLRS: Deep learning-based recommender system for smart healthcare ecosystem. In ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE.
  • X. Deng and F. Huangfu. 2019. Collaborative variational deep learning for healthcare recommendation. IEEE Access 7 (2019), 55679–55688.
  • R. V. Aswiga and A. P. Shanthi. 2022. A multilevel transfer learning technique and LSTM framework for generating medical captions for limited CT and DBT images. Journal of Digital Imaging 35, 3 (2022), 564–580.
  • S. Sahay, N. Omare, and K. K. Shukla. 2021. An approach to identify captioning keywords in an image using LIME. In IEEE 2021 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2021. IEEE, 648–651.
  • Y. Zhang, M. Liu, L. Zhang, L. Wang, K. Zhao, S. Hu, X. Chen, and X. Xie. 2023. Comparison of chest radiograph captions based on natural language processing vs completed by radiologists. JAMA Network Open 6, 2 (2023).
  • X. Wang, Y. Peng, L. Lu, Z. Lu, and R. M. Summers. 2018. TieNet: Text-image embedding network for common thorax disease classification and reporting in chest X-rays. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9049–9058.
  • M. Arabahmadi, R. Farahbakhsh, and J. Rezazadeh. 2022. Deep learning for smart healthcare—A survey on brain tumor detection from medical imaging. Sensors (2022).
  • C. Wu, X. Zhang, Y. Zhang, Y. Wang, and W. Xie. 2023. MedKLIP: Medical knowledge enhanced language-image pre-training for X-ray diagnosis. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2023, 21372–21383.
  • S. J. Heo, Y. Kim, S. Yun, S. S. Lim, J. Kim, C. M. Nam, E. Park, I. Jung, and J. H. Yoon. 2019. Deep learning algorithms with demographic information help to detect tuberculosis in chest radiographs in annual workers’ health examination data. International Journal of Environmental Research and Public Health 16, 2 (2019).
  • Z. Zhang, P. Chen, M. McGough, F. Xing, C. Wang, M. Bui, Y. Xie, M. Sapkota, L. Cui, J. Dhillon, N. Ahmad, F. K. Khalil, S. I. Dickinson, X. Shi, F. Liu, H. Su, J. Cai, and L. Yang. 2019. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nature Machine Intelligence 1, 5 (2019), 236–245.
  • D. Onita, A. Birlutiu, and L. P. Dinu. 2020. Towards mapping images to text using deep-learning architectures. Mathematics 8, 9 (2020).
  • Y. Lin, K. Lai, and W. Chang. 2023. Skin medical image captioning using multi-label classification and Siamese network. IEEE Access 11 (2023), 23447–23454.
  • H. Park, K. Kim, S. Park, and J. Choi. 2021. Medical image captioning model to convey more details: Methodological comparison of feature difference generation. IEEE Access 9 (2021), 150560–150568.
  • J. Kufel, K. Bargieł-Łączek, S. Kocot, M. Koźlik, W. Bartnikowska, M. Janik, Ł. Czogalik, P. Dudek, M. Magiera, A. Lis, I. Paszkiewicz, Z. Nawrat, M. Cebula, and K. Gruszczyńska. 2023. What is machine learning, artificial neural networks and deep learning?—Examples of practical applications in medicine. Diagnostics (2023).
  • M. Irfan, M. A. Iftikhar, S. Yasin, U. Draz, T. Ali, S. Hussain, S. Bukhari, A. S. Alwadie, and S. Rahman. 2021. Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19. International Journal of Environmental Research and Public Health 18, 6 (2021).
  • S. Sheykhivand, Z. Mousavi, S. Mojtahedi, T. Yousefi Rezaii, A. Farzamnia, S. Meshgini, and I. Saad. 2021. Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images. Alexandria Engineering Journal 60, 3 (2021), 2885–2903.
  • M. Karnati, A. Seal, G. Sahu, A. Yazidi, and O. Krejcar. 2022. A novel multi-scale based deep convolutional neural network for detecting COVID-19 from X-rays. Applied Soft Computing 125 (2022).
  • M. K. Mahbub, M. Biswas, L. Gaur, F. Alenezi, and K. C. Santosh. 2022. Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: COVID-19, pneumonia, and tuberculosis. Information Science 592 (2022), 389–401.
  • T.-C. T. Chen, H.-C. Wu, and M.-C. Chiu. 2023. A deep neural network with modified random forest incremental interpretation approach for diagnosing diabetes in smart healthcare. Applied Soft Computing 111183 (2023).
  • [110] D. Keidar, D. Yaron, E. Goldstein, Y. Shachar, A. Blass, L. Charbinsky, I. Aharony, L. Lifshitz, D. Lumelsky, Z. Neeman, and M. Mizrachi. 2021. COVID-19 classification of X-ray images using deep neural networks. European Radiology (2021).
  • L. Pan, B. Ji, H. Wang, L. Wang, M. Liu, M. Chongcheawchamnan, and S. Peng. 2022. MFDNN: Multi-channel feature deep neural network algorithm to identify COVID-19 chest X-ray images. Health Information Science and Systems 10, 1 (2022).
  • S. Sharma and K. Guleria. 2022. A deep learning based model for the detection of pneumonia from chest X-ray images using VGG-16 and neural networks. Procedia Computer Science 218 (2022), 357–366.
  • M. Rehman, R. A. Shah, M. B. Khan, N. A. A. Ali, A. A. Alotaibi, T. Althobaiti, N. Ramzan, S. A. Shah, X. Yang, A. Alomainy, M. A. Imran, and Q. H. Abbasi. 2021. Contactless small-scale movement monitoring system using software defined radio for early diagnosis of COVID-19. IEEE Sensors Journal 21, 15 (2021), 17180–17188.
  • M. B. Khan, Z. Zhang, L. Li, W. Zhao, M. A. M. Al Hababi, X. Yang, and Q. H. Abbasi. 2020. A systematic review of non-contact sensing for developing a platform to contain COVID-19. Micromachines (2020).
  • U. Saeed, S. A. Shah, M. Z. Khan, A. A. Alotaibi, T. Althobaiti, N. Ramzan, and Q. H. Abbasi. 2022. Intelligent reflecting surface-based non-LOS human activity recognition for next-generation 6G-enabled healthcare system. Sensors 22, 19 (2022).
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Smart Healthcare; Artificial Intelligence; Early Diagnosis

Powered by PhDFocusTM