Research Article

Optimized Deep Learning Models for Monthly Weather Forecast in Kogi, Nigeria.

by  Shaibu Hamza, Abisoye Opeyemi Aderiike, Joshua Babatunde Agbogun, Malik Adeiza Rufai, Bello Ojochide Joy
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 43
Published: September 2025
Authors: Shaibu Hamza, Abisoye Opeyemi Aderiike, Joshua Babatunde Agbogun, Malik Adeiza Rufai, Bello Ojochide Joy
10.5120/ijca2025925744
PDF

Shaibu Hamza, Abisoye Opeyemi Aderiike, Joshua Babatunde Agbogun, Malik Adeiza Rufai, Bello Ojochide Joy . Optimized Deep Learning Models for Monthly Weather Forecast in Kogi, Nigeria.. International Journal of Computer Applications. 187, 43 (September 2025), 9-16. DOI=10.5120/ijca2025925744

                        @article{ 10.5120/ijca2025925744,
                        author  = { Shaibu Hamza,Abisoye Opeyemi Aderiike,Joshua Babatunde Agbogun,Malik Adeiza Rufai,Bello Ojochide Joy },
                        title   = { Optimized Deep Learning Models for Monthly Weather Forecast in Kogi, Nigeria. },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 43 },
                        pages   = { 9-16 },
                        doi     = { 10.5120/ijca2025925744 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Shaibu Hamza
                        %A Abisoye Opeyemi Aderiike
                        %A Joshua Babatunde Agbogun
                        %A Malik Adeiza Rufai
                        %A Bello Ojochide Joy
                        %T Optimized Deep Learning Models for Monthly Weather Forecast in Kogi, Nigeria.%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 43
                        %P 9-16
                        %R 10.5120/ijca2025925744
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Accurate weather forecasting is essential for agriculture, disaster preparedness, and economic planning in Nigeria, yet existing approaches such as Numerical Weather Prediction (NWP) face challenges of computational intensity and limited accuracy for localized monthly predictions. This study develops optimized deep learning models for monthly weather forecasting using Nigerian meteorological data from 2014 to 2023, with a focus on the Kogi region. Three deep learning architectures: Artificial Neural Networks (ANN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM), were implemented and optimized using Bayesian hyperparameter tuning. To further enhance predictive performance, a Boosting Ensemble approach integrating the three models was proposed. Model evaluation employed Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) as benchmarks. Results showed that while RNN outperformed ANN and LSTM individually, the Boosting Ensemble achieved the best accuracy, with the lowest RMSE (52.351) and MAE (29.475), consistently capturing both stable and transitional weather patterns. The findings demonstrate that ensemble deep learning methods significantly improve monthly weather forecasting accuracy compared to standalone models. This study contributes a scalable, data-driven framework tailored to Nigeria’s climatic conditions, offering practical value for farmers, policymakers, and disaster management agencies, while also providing a foundation for future research incorporating additional climatic variables and advanced attention-based models.

References
  • Abdalla, A. M., Ghaith, I. H., & Tamimi, A. A. (2021, July). Deep learning weather forecasting techniques: literature survey. In 2021 International Conference on Information Technology (ICIT) (pp. 622-626). IEEE.
  • Almazroui, M., Saeed, F., Saeed, S., Nazrul Islam, M., Ismail, M., Klutse, N. A. B., & Siddiqui, M. H. (2020). Projected change in temperature and precipitation over Africa from CMIP6. Earth Systems and Environment, 4, 455-475.
  • Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi, L. A. (2022). Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7, 100204.
  • Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47-55.
  • Brotzge, J. A., Berchoff, D., Carlis, D. L., Carr, F. H., Carr, R. H., Gerth, J. J., ... & Wang, X. (2023). Challenges and opportunities in numerical weather prediction. Bulletin of the American Meteorological Society, 104(3), E698-E705.
  • Chattopadhyay, A., Nabizadeh, E., & Hassanzadeh, P. (2020). Analog forecasting of extreme‐causing weather patterns using deep learning. Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001958.
  • Egbunu, C. O., Ogedengbe, M. T., Yange, T. S., Rufai, M. A., & Muhammed, H. I. (2021). Towards food security: the prediction of climatic factors in Nigeria using random forest approach. Journal of Computer Science and Information Technology, 70-81.
  • Godwin, J. A., Singh, S., & Kumar, R. (2024). Prediction of Rainfall Using Data Mining Techniques: Evidence from Nigeria. SSRN, 4829865.
  • Grönquist, P., Yao, C., Ben-Nun, T., Dryden, N., Dueben, P., Li, S., & Hoefler, T. (2021). Deep learning for post-processing ensemble weather forecasts. Philosophical Transactions of the Royal Society A, 379(2194), 20200092.
  • Guo, Q., He, Z., & Wang, Z. (2024). Monthly climate prediction using deep convolutional neural networks and long short-term memory. Scientific Reports, 14(1), 17748. https://doi.org/10.1038/s41598-024-68906-6
  • Han, Y., Mi, L., Shen, L., Cai, C. S., Liu, Y., Li, K., & Xu, G. (2022). A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy, 312, 118777.
  • Hewage, P., Behera, A., Trovati, M., & Pereira, E. (2019, May). Long-short term memory for an effective short-term weather forecasting model using surface weather data. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 382-390). Cham: Springer International Publishing.
  • Holmstrom, M., Liu, D., & Vo, C. (2016). Machine learning applied to weather forecasting. Meteorological Applications, 10(1), 1-5.
  • Karevan, Z., & Suykens, J. A. (2020). Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks, 125, 1-9.
  • Meenal, R. M. P. A., Michael, P. A., Pamela, D., & Rajasekaran, E. (2021). Weather prediction using random forest machine learning model. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1208-1215.
  • Ojo, O. S., & Ogunjo, S. T. (2022). Machine learning models for prediction of rainfall over Nigeria. Scientific African, 16, e01246.
  • Salman, A. G., Kanigoro, B., & Heryadi, Y. (2015, October). Weather forecasting using deep learning techniques. In 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 281-285). IEEE.
  • Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., ... & Stadtler, S. (2021). Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A, 379(2194), 20200097.
  • Singh, S., Kaushik, M., Gupta, A., & Malviya, A. K. (2019, March). Weather forecasting using machine learning techniques. In Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE).
  • Uluocak, I., & Bilgili, M. (2023). Daily air temperature forecasting using LSTM-CNN and GRU-CNN models. Acta Geophysica, 1-20.
  • Vourlidas, A. (2021). Improving the Medium-Term Forecasting of Space Weather: A Big Picture Review From a Solar Observer's Perspective. Frontiers in Astronomy and Space Sciences, 8, 651527.
  • Wang, Y., Shi, L., Hu, Y., Hu, X., Song, W., & Wang, L. (2023). A comprehensive study of deep learning for soil moisture prediction. Hydrology and Earth System Sciences Discussions, 2023, 1-38.
  • Xu, S., Zhang, Y., Chen, J., & Zhang, Y. (2025). Short-to medium-term weather forecast skill of the AI-based Pangu-Weather model using automatic weather stations in China. Remote Sensing, 17(2), 1.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Forecasting Deep Learning (DL) Artificial Neural Network (ANN) Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM) Ensemble Learning Bayesian Optimization

Powered by PhDFocusTM