Research Article

Cognitive Platform Engineering for Autonomous Cloud Operations

by  Vinoth Punniyamoorthy, Nitin Saksena, Srivenkateswara Reddy Sankiti, Nachiappan Chockalingam, Aswathnarayan Muthukrishnan Kirubakaran, Shiva Kumar Reddy Carimireddy, Durgaraman Maruthavanan
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 72
Published: January 2026
Authors: Vinoth Punniyamoorthy, Nitin Saksena, Srivenkateswara Reddy Sankiti, Nachiappan Chockalingam, Aswathnarayan Muthukrishnan Kirubakaran, Shiva Kumar Reddy Carimireddy, Durgaraman Maruthavanan
10.5120/ijca2026926213
PDF

Vinoth Punniyamoorthy, Nitin Saksena, Srivenkateswara Reddy Sankiti, Nachiappan Chockalingam, Aswathnarayan Muthukrishnan Kirubakaran, Shiva Kumar Reddy Carimireddy, Durgaraman Maruthavanan . Cognitive Platform Engineering for Autonomous Cloud Operations. International Journal of Computer Applications. 187, 72 (January 2026), 17-23. DOI=10.5120/ijca2026926213

                        @article{ 10.5120/ijca2026926213,
                        author  = { Vinoth Punniyamoorthy,Nitin Saksena,Srivenkateswara Reddy Sankiti,Nachiappan Chockalingam,Aswathnarayan Muthukrishnan Kirubakaran,Shiva Kumar Reddy Carimireddy,Durgaraman Maruthavanan },
                        title   = { Cognitive Platform Engineering for Autonomous Cloud Operations },
                        journal = { International Journal of Computer Applications },
                        year    = { 2026 },
                        volume  = { 187 },
                        number  = { 72 },
                        pages   = { 17-23 },
                        doi     = { 10.5120/ijca2026926213 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2026
                        %A Vinoth Punniyamoorthy
                        %A Nitin Saksena
                        %A Srivenkateswara Reddy Sankiti
                        %A Nachiappan Chockalingam
                        %A Aswathnarayan Muthukrishnan Kirubakaran
                        %A Shiva Kumar Reddy Carimireddy
                        %A Durgaraman Maruthavanan
                        %T Cognitive Platform Engineering for Autonomous Cloud Operations%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 72
                        %P 17-23
                        %R 10.5120/ijca2026926213
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Modern DevOps practices have accelerated software delivery through automation, CI/CD pipelines, and observability tooling, but these approaches struggle to keep pace with the scale and dynamism of cloud-native systems. As telemetry volume grows and configuration drift increases, traditional, rule-driven automation often results in reactive operations, delayed remediation, and dependency on manual expertise. This paper introduces Cognitive Platform Engineering, a next-generation paradigm that integrates sensing, reasoning, and autonomous action directly into the platform lifecycle. This paper propose a four-plane reference architecture that unifies data collection, intelligent inference, policy-driven orchestration, and human experience layers within a continuous feedback loop. A prototype implementation built with Kubernetes, Terraform, Open Policy Agent, and ML-based anomaly detection demonstrates improvements in mean time to resolution, resource efficiency, and compliance. The results show that embedding intelligence into platform operations enables resilient, self-adjusting, and intent-aligned cloud environments. The paper concludes with research opportunities in reinforcement learning, explainable governance, and sustainable self-managing cloud ecosystems.

References
  • S. Jain and P. Kumar, “DevOps Practices Into Machine Learning,” in Proc. IEEE Int. Conf. on Intelligent Systems, Smart and Green Technologies (ICISSGT), Visakhapatnam, India, 2024, pp. 97–101, doi: 10.1109/ICISSGT58904.2024.00029.
  • J. A. V. M. K. Jayakody and W. M. J. I. Wijayanayake, “DevOps Maturity: A Systematic Literature Review,” in Proc. 2024 Int. Research Conf. on Smart Computing and Systems Engineering (SCSE), vol. 7, 2024, pp. 1–6, doi: 10.1109/SCSE61872.2024.10550493.
  • A. Saxena, S. Singh, S. Prakash, T. Yang, and R. S. Rathore, “DevOps Automation Pipeline Deployment with IaC (Infrastructure as Code),” in Proc. 2024 IEEE Silchar Subsection Conf. (SILCON 2024), 2024, pp. 1–6, doi: 10.1109/SILCON63976.2024.10910699.
  • A. Di Stefano, A. Di Stefano, G. Morana, and D. Zito, “Prometheus and AIOps for the Orchestration of Cloud- Native Applications in Ananke,” in Proc. 2021 IEEE 30th Int. Conf. on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2021, pp. 27–32, doi: 10.1109/WETICE53228.2021.00017.
  • D. K. Seth, K. K. Ratra, and A. P. Sundareswaran, “AI and Generative AI-Driven Automation for Multi- Cloud and Hybrid Cloud Architectures: Enhancing Security, Performance, and Operational Efficiency,” in Proc. 2025 IEEE 15th Annual Computing and Communication Workshop and Conference (CCWC), 2025, pp. 784–793, doi: 10.1109/CCWC62904.2025.10903928.
  • S. Shen, J. Zhang, D. Huang, and J. Xiao, “Evolving from Traditional Systems to AIOps: Design, Implementation and Measurements,” in Proc. 2020 IEEE Int. Conf. on Advances in Electrical Engineering and Computer Applications (AEECA), 2020, pp. 276–280, doi: 10.1109/AEECA49918.2020.9213650.
  • N. Chockalingam, A. Chakrabortty, and A. Hussain, “Mitigating Denial-of-Service attacks in wide-area LQR control,” in Proc. 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5. doi: 10.1109/PESGM.2016.7741285.
  • S. G. Aarella, V. P. Yanambaka, S. P. Mohanty, and E. Kougianos, “Fortified-Edge 5.0: Federated learning for secure and reliable PUF in authentication systems,” in Proc. IFIP/IEEE 32nd Int. Conf. Very Large Scale Integration (VLSI-SoC), Tanger, Morocco, 2024, pp. 1–6, doi: 10.1109/VLSI-SoC62099.2024.10767788.
  • A. M. Kirubakaran, L. Butra, S. Malempati, A. K. Agarwal, S. Saha, and A. Mazumder, “Real-Time Anomaly Detection on Wearables using Edge AI,” International Journal of Engineering Research and Technology (IJERT), vol. 14, no. 11, Nov. 2025. doi: 10.17577/IJERTV14IS110345.
  • V. Punniyamoorthy, A. G. Parthi, M. Palanigounder, R. K. Kodali, B. Kumar, and K. Kannan, “A Privacy- Preserving Cloud Architecture for Distributed Machine Learning at Scale,” International Journal of Engineering Research and Technology (IJERT), vol. 14, no. 11, Nov. 2025.
  • S. K. Davuluri, V. Challagulla, V. Mudapaka, and U. Konka, “AI-Driven DevOps in Telecommunications: Bridging Predictive Analytics with Continuous Delivery for Network Agility,” in Proc. 2025 IEEE Int. Conf. and Expo on Real Time Communications at IIT (RTC), Chicago, IL, USA, 2025, pp. 1–4, doi: 10.1109/RTC66985.2025.11211551.
  • E. Naresh, S. V. N. Murthy, N. Sreenivasa, S. Merikapudi, and C. R. Rakhi Krishna, “Continuous Integration, Testing Deployment and Delivery in DevOps,” in Proc. 2024 Int. Conf. on Knowledge Engineering and Communication Systems (ICKECS), vol. 1, 2024, pp. 1–4, doi: 10.1109/ICKECS61492.2024.10616918.
  • R. Eramo, B. Said, M. Oriol, H. Bruneliere, and S. Morales, “An Architecture for Model-Based and Intelligent Automation in DevOps,” J. Syst. Softw., vol. 217, pp. 1–21, Nov. 2024, doi: 10.1016/j.jss.2024.112180.
  • Y. Xiang, Z. Yang, J. Peng, H. Bauer, P. T. J. Kon, Y. Qiu, and A. Chen, “Automated Bug Discovery in Cloud Infrastructure-as-Code Updates with LLM Agents,” in Proc. 2025 IEEE/ACM Int. Workshop on Cloud Intelligence & AIOps (AIOps), 2025, pp. 20–25, doi: 10.1109/AIOps66738.2025.00011.
  • H. Bruneliere, V. Muttillo, R. Eramo, L. Berardinelli, A. G´omez, A. Bagnato, A. Sadovykh, and A. Cicchetti, “AIDOaRt: AI-augmented Automation for DevOps, a Model- Based Framework for Continuous Development in Cyber– Physical Systems,” Microprocess. Microsyst., vol. 94, pp. 1–13, Oct. 2022, doi: 10.1016/j.micpro.2022.104672.
  • J. Mulder, Enterprise DevOps for Architects: Leverage AIOps and DevSecOps for Secure Digital Transformation. 2021.
  • V. Punniyamoorthy, B. Kumar, S. Saha, M. Palanigounder, L. Butra, A. K. Agarwal, and K. Kannan, “An SLO-driven and cost-aware autoscaling framework for Kubernetes,” International Journal of Computer Science Trends and Technology (IJCST), vol. 13, no. 6, Nov–Dec 2025.
  • A. Muthukrishnan Kirubakaran, N. Saksena, S. Malempati, S. Saha, S. K. R. Carimireddy, A. Mazumder, and R. S. Bodala, “Federated Multi-Modal Learning Across Distributed Devices,” International Journal of Innovative Research in Technology, vol. 12, no. 7, pp. 2852–2857, 2025, doi: 10.5281/zenodo.17892974.
  • K. A. Singh and A. Choudhry, “AI-Powered Strategies for Cloud Infrastructure Management,” in Proc. 2025 4th OPJU Int. Tech. Conf. (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0, 2025, pp. 1–5, doi: 10.1109/OTCON65728.2025.11070393.
  • H. J. Kam and Hemon-Hildgen A., “GenAI in DevOps: Boon or a Bane,” in Proc. 2025 MIPRO 48th ICT and Electronics Convention, 2025, pp. 1490–1494, doi: 10.1109/MIPRO65660.2025.11131737.
  • B. Ramdoss, A. M. Kirubakaran, P. B. S., C. S. Hemalatha, and V. Vaidehi, “Human Fall Detection Using Accelerometer Sensor and Visual Alert Generation on Android Platform,” International Conference on Computational Systems in Engineering and Technology, Mar 2014, doi: 10.2139/ssrn.5785544.
  • S. G. Aarella, V. P. Yanambaka, S. P. Mohanty, and E. Kougianos, “Fortified-Edge 2.0: Advanced machine-learningdriven framework for secure PUF-based authentication in collaborative edge computing,” Future Internet, vol. 17, no. 7, Art. no. 272, 2025, doi: 10.3390/fi17070272.
  • A. Gulenko, A. Acker, O. Kao, and F. Liu, “AI-Governance and Levels of Automation for AIOps-supported System Administration,” in Proc. 2020 29th Int. Conf. on Computer Communications and Networks (ICCCN), 2020, pp. 1–6, doi: 10.1109/ICCCN49398.2020.9209606.
  • V. Punniyamoorthy, “CPE: Cognitive Platform Engineering Prototype,” GitHub repository, 2025. [Online]. Available: https://github.com/Vinodhsrii/cpe
  • V. Raj, “Utilizing AIOps for Predictive Maintenance in Hybrid Cloud Environments,” in Proc. 2025 IEEE Int. Conf. on Joint Cloud Computing (JCC), 2025, pp. 131–136, doi: 10.1109/JCC67032.2025.00022.
  • A. M. Kirubakaran, A. Parthasarathy, N. Saksena, R. S. Bodala, A. Deshpande, S. Malempati, S. Carimireddy, and A. Mazumder, “Governing cloud data pipelines with agentic AI,” International Journal of Computer Science Trends and Technology (IJCST), vol. 13, no. 6, pp. 278–284, Nov–Dec. 2025
  • A.Wendt and T. Sauter, “Agent-Based Cognitive Architecture Framework Implementation of Complex Systems within a Multi-Agent Framework,” in Proc. 2016 IEEE 21st Int. Conf. on Emerging Technologies and Factory Automation (ETFA), 2016, pp. 1–4, doi: 10.1109/ETFA.2016.7733696.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

DevOps Cognitive Platform Engineering AIOps Cloud Automation Kubernetes Terraform Platform Engineering Self-Healing Systems Intelligent Operations

Powered by PhDFocusTM