Research Article

A Comprehensive Review on Type-2 Fuzzy Logic in Intelligent Transportation Systems

by  Gaurav Kemwal, Sunil Kumar
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 75
Published: January 2026
Authors: Gaurav Kemwal, Sunil Kumar
10.5120/ijca2026926287
PDF

Gaurav Kemwal, Sunil Kumar . A Comprehensive Review on Type-2 Fuzzy Logic in Intelligent Transportation Systems. International Journal of Computer Applications. 187, 75 (January 2026), 23-33. DOI=10.5120/ijca2026926287

                        @article{ 10.5120/ijca2026926287,
                        author  = { Gaurav Kemwal,Sunil Kumar },
                        title   = { A Comprehensive Review on Type-2 Fuzzy Logic in Intelligent Transportation Systems },
                        journal = { International Journal of Computer Applications },
                        year    = { 2026 },
                        volume  = { 187 },
                        number  = { 75 },
                        pages   = { 23-33 },
                        doi     = { 10.5120/ijca2026926287 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2026
                        %A Gaurav Kemwal
                        %A Sunil Kumar
                        %T A Comprehensive Review on Type-2 Fuzzy Logic in Intelligent Transportation Systems%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 75
                        %P 23-33
                        %R 10.5120/ijca2026926287
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a comprehensive survey of the development, methodologies, and applications of Type-2 Fuzzy Logic System (T2FLS) in Intelligent Transportation Systems (ITS) over the period 2012–2025. Rapid improvements in autonomous vehicles, electric mobility, sensor-driven traffic control, and large-scale transportation optimization have increased real-time decision uncertainty. T2FLS models ambiguity based on noisy data, human behavior, environmental volatility, and dynamic system interactions within a principled framework. Drawing on over 50 key studies, this paper demonstrates that T2FLS outperforms Type-1 Fuzzy Logic System (T1FLS) approaches and classical control techniques in traffic signal control, autonomous navigation, anti-lock braking, electric vehicle energy management, driver behavior modeling, and evacuation routing by synthesizing more than 50 key studies. The review also examines methodological trends, constraints, and future research needs, providing a path for next-generation ITS integration of hybrid T2FLS.

References
  • Kohlhase, J. E. (2013). The new urban world 2050: Perspectives, prospects and problems. Regional Science Policy & Practice, 5(2), 153–166. https://doi.org/10.1111/rsp3.12001
  • Kumar, R. (2024). A comprehensive review of MCDM methods, applications, and emerging trends. Decision Making Advances, 3, 185–199. https://doi.org/10.31181/dma31202569
  • Nishanth, F. P., Dash, S. K., & Mahapatro, S. R. (2024). Critical study of type-2 fuzzy logic control from theory to applications: A state-of-the-art comprehensive survey. e-Prime – Advances in Electrical Engineering, Electronics and Energy, 10, 100771. https://doi.org/10.1016/j.prime.2024.100771
  • Zamani, M., Nejati, H., Jahromi, A. T., Partovi, A. R., Nobari, S. H., & Shirazi, G. N. (2008, December 15–20). Toolbox for interval type-2 fuzzy logic systems. In Proceedings of the Joint Conference on Information Sciences (Shenzhen, China).
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–I. Information Sciences, 8, 199–249.
  • Karnik, N. N., & Mendel, J. M. (1998, May 4–9). Introduction to type-2 fuzzy logic systems. In Proceedings of the IEEE World Congress on Computational Intelligence (Vol. 2, pp. 915–920). IEEE.
  • Liang, Q., & Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems, 8(5), 535–550.
  • Wen, C., Zhao, H., Li, T., & Liu, Y. (2015). Intelligent traffic signal controller based on type-2 fuzzy logic and NSGA-II. Journal of Intelligent & Fuzzy Systems, 29, 2611–2618. https://doi.org/10.3233/IFS-151964
  • Jovanović, A., & Teodorović, D. (2022). Type-2 fuzzy logic based transit priority strategy. Expert Systems with Applications, 187, 115875. https://doi.org/10.1016/j.eswa.2021.115875
  • Balaji, P. G., & Srinivasan, D. (2011). Type-2 fuzzy logic based urban traffic management. Engineering Applications of Artificial Intelligence, 24(1), 12–22. https://doi.org/10.1016/j.engappai.2010.08.007
  • Swain, N. K. (2006). A survey of application of fuzzy logic in intelligent transportation systems (ITS) and rural ITS. In Proceedings of the IEEE SoutheastCon 2006 (pp. 85–90). IEEE. https://doi.org/10.1109/SECON.2006.1629329
  • Liu, Y., Xu, Q., Guo, H., & Zhang, H. (2022). A Type-2 fuzzy approach to driver-automation shared driving lane keeping control of semi-autonomous vehicles under imprecise premise variable. Chinese Journal of Mechanical Engineering, 35, Article 46. https://doi.org/10.1186/s10033-022-00690-4
  • Arifin, B., Suprapto, B. Y., Prasetyowati, S. A. D., & Nawawi, Z. (2022). Steering control in electric power steering autonomous vehicle using type-2 fuzzy logic control and PI control. World Electric Vehicle Journal, 13(3), 53. https://doi.org/10.3390/wevj13030053
  • Castillo, O., & Melin, P. (2008). Type-2 fuzzy logic: Theory and applications. Springer. https://doi.org/10.1007/978-3-540-76284-3
  • Mittal, K., Jain, A., Vaisla, K. S., Castillo, O., & Kacprzyk, J. (2020). A comprehensive review on type-2 fuzzy logic applications: Past, present and future. Engineering Applications of Artificial Intelligence, 95, 103916. https://doi.org/10.1016/j.engappai.2020.103916
  • Castillo, O., & Melin, P. (2014). A review on interval type-2 fuzzy logic applications in intelligent control. Information Sciences, 279, 615–631. https://doi.org/10.1016/j.ins.2014.04.015
  • Guler, N., Ismail, Z. M., Hazem, Z. B., & Naik, N. (2024). Adaptive fuzzy logic controller-based intelligent energy management system scheme for hybrid electric vehicles. IEEE Access, 12, 173441–173454. https://doi.org/10.1109/ACCESS.2024.3496897
  • Chang, M.-H., & Wu, Y.-C. (2022). Speed control of electric vehicle by using type-2 fuzzy neural network. International Journal of Machine Learning and Cybernetics, 13, 1647–1660. https://doi.org/10.1007/s13042-021-01475-6
  • Wang, J.-C., Wang, F.-H., Chen, Y.-L., & Lv, L.-F. (2024). Anti-lock braking control using an interval type-2 fuzzy neural network scheme for electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 238(14), 4534–4550. https://doi.org/10.1177/09544070231197856
  • Men, J., & Zhao, C. (2024). A Type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location. Energy, 293, 130701. https://doi.org/10.1016/j.energy.2024.130701
  • Zhang, Z. (2021). Distribution optimization of electric vehicle load space based on interval type-II fuzzy logic algorithm. Journal of Intelligent & Fuzzy Systems, 41(4), 4899–4904. https://doi.org/10.3233/JIFS-189975
  • Aydin, N., Cari, M., Kara, B., & Ayyildiz, E. (2025). A review of artificial intelligence-enhanced fuzzy multi-criteria decision-making approaches for sustainable transportation planning. Computers, Materials & Continua, 85(2), 2625–2650. https://doi.org/10.32604/cmc.2025.067290
  • Mittal, K., Jain, A., Vaisla, K. S., Castillo, O., & Kacprzyk, J. (2020). A comprehensive review on type-2 fuzzy logic applications: Past, present and future. Engineering Applications of Artificial Intelligence, 95, 103916. https://doi.org/10.1016/j.engappai.2020.103916
  • Bi, Y., Sun, Z., Lu, X., Sun, Z., Liu, D., & Liu, K. (2018). Adaptive type-2 fuzzy traffic signal control with on-line optimization. Journal of Intelligent & Fuzzy Systems, 35(2), 1889. https://doi.org/10.3233/JIFS-171405
  • Saghian, Z., Esfahanipour, A., & Karimi, B. (2022). A novel Kumaraswamy interval type-2 TSK fuzzy logic system for subway passenger demand prediction. Iranian Journal of Fuzzy Systems, 19(1), 69–87. https://doi.org/10.22111/IJFS.2022.6944
  • Amirkhani, A., Shirzadeh, M., & Molaie, M. (2022). An indirect type-2 fuzzy neural network optimized by the grasshopper algorithm for vehicle ABS controller. IEEE Access, 10, 58736–58751. https://doi.org/10.1109/ACCESS.2022.3179700
  • riviño, L., López, A., Yuste, A. J., & Cuevas, J. C. (2024). Decentralized EV charging and discharging scheduling algorithm based on Type-II fuzzy-logic controllers. Journal of Energy Storage, 93, 112054. https://doi.org/10.1016/j.est.2024.112054
  • Čubranić-Dobrodolac, M., Švadlenka, L., Čičević, S., Dobrodolac, M., & Mitrović, S. (2022). A bee colony optimization (BCO) and type-2 fuzzy approach to measuring the impact of speed perception on motor vehicle crash involvement. Soft Computing, 26, 4463–4486. https://doi.org/10.1007/s00500-021-06516-4
  • Zouari, M., Baklouti, N., Kammoun, M. H., Ayed, M. B., Alimi, A. M., & Sanchez-Medina, J. (2021). A multi-agent system for road traffic decision making based on hierarchical interval type-2 fuzzy knowledge representation system. In Proceedings of the 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–6). IEEE. https://doi.org/10.1109/FUZZ45933.2021.9494502
  • Saghian, Z., Esfahanipour, A., & Karimi, B. (2022). A novel Kumaraswamy interval type-2 TSK fuzzy logic system for subway passenger demand prediction. Iranian Journal of Fuzzy Systems, 19(1), 69–87. https://doi.org/10.22111/IJFS.2022.6944
  • Solano Martínez, J., John, R. I., Hissel, D., & Péra, M.-C. (2012). A survey-based type-2 fuzzy logic system for energy management in hybrid electrical vehicles. Information Sciences, 190, 192–207. https://doi.org/10.1016/j.ins.2011.12.013
  • Liu, Y., Xu, Q., Man, Z., Cao, Z., & Zhang, C. (2022). A type-2 fuzzy approach to driver-automation shared driving lane keeping control of semi-autonomous vehicles under imprecise premise variable. Chinese Journal of Mechanical Engineering, 35(46). https://doi.org/10.1186/s10033-022-00771-7
  • Men, J., & Zhao, C. (2024). A type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location. Energy, 293, 130701. https://doi.org/10.1016/j.energy.2024.130701
  • Guler, N., Ismail, Z. M., Hazem, Z. B., & Naik, N. (2024). Adaptive fuzzy logic controller-based intelligent energy management system scheme for hybrid electric vehicles. IEEE Access, 12, 173441–173454. https://doi.org/10.1109/ACCESS.2024.3496897
  • Taş, M. A., & Türkay, M. (2021). An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: The case of ship loader. Applied Soft Computing, 98, 106885. https://doi.org/10.1016/j.asoc.2020.106885
  • Amirkhani, A., Shirzadeh, M., & Molaie, M. (2022). An indirect type-2 fuzzy neural network optimized by the grasshopper algorithm for vehicle ABS controller. IEEE Access, 10, 58736–58751. https://doi.org/10.1109/ACCESS.2022.3179700
  • Sadeghian, A., Sadjadi, S. J., & Izadi, A. (2012). An interval type-2 fuzzy logic-based map matching algorithm for airport ground movements. Journal of Intelligent & Fuzzy Systems, 23(5), 217–229.
  • Bi, Y., Sun, Z., Li, H., & Liu, K. (2018). Adaptive type-2 fuzzy traffic signal control with on-line optimization. Journal of Intelligent & Fuzzy Systems, 35(2), 2267–2278. https://doi.org/10.3233/JIFS-171405
  • Phan, D., Amani, A. M., Mola, M., Rezaei, A. A., Fayyazi, M., Jalili, M., Ba Pham, D., Langari, R., & Khayyam, H. (2021). Cascade Adaptive MPC with Type 2 Fuzzy System for Safety and Energy Management in Autonomous Vehicles: A Sustainable Approach for Future of Transportation. Sustainability, 13(18), 10113. https://doi.org/10.3390/su131810113
  • Zhang, B., Li, J., Wang, Y., & Xu, X. (2023). Coordinated control of dual-motor using the interval type-2 fuzzy logic in autonomous steering system of AGV. International Journal of Fuzzy Systems, 25(2), 400–415. https://doi.org/10.1007/s40815-022-01328-4
  • Triviño, A., López, A., Yuste, A. J., & Cuevas, J. C. (2024). Decentralized EV charging and discharging scheduling algorithm based on Type-II fuzzy-logic controllers. Journal of Energy Storage, 93, 112054. https://doi.org/10.1016/j.est.2024.112054
  • Kadir, E., Abdullah, L. N., & Mohamed, Z. (2019). Driver rating based on interval type-2 fuzzy logic system. International Journal of Fuzzy Systems, 21(8), 2410–2422. https://doi.org/10.1007/s40815-019-00694-4
  • Rathod, R., Joshi, G., & Arkatkar, S. (2025). Development of a type 2 fuzzy scale for different types of urban travelers and their concerns with transit usage. Transportation Research Record: Journal of the Transportation Research Board. Advance online publication. https://doi.org/10.1177/03611981251380588
  • Dobrodolac, M., Čubranić-Dobrodolac, M., & Jovčić, S. (2025). Special issue: “Fuzzy logic applications in traffic and transportation engineering”. Mathematics, 13(8), 1313. https://doi.org/10.3390/math13081313
  • Phan, D., Amani, A. M., Mola, M., Rezaei, A. A., Fayyazi, M., Jalili, M., Ba Pham, D., Langari, R., & Khayyam, H. (2025). Integrating type-2 fuzzy logic controllers with digital twin and neural networks for advanced hydropower system management. Scientific Reports, 15, 5140. https://doi.org/10.1038/s41598-025-89866-5
  • Nishanth, F. P., Dash, S. K., & Mahapatro, S. R. (2024). Critical study of type-2 fuzzy logic control from theory to applications: A state-of-the-art comprehensive survey. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 10, 100771. https://doi.org/10.1016/j.prime.2024.100771
  • Ganie, Z. A., Khaki, Z. G., Tarray, T. A., Salam, G., & Alotaibi, E. S. (2025). Optimization of transportation efficiency through fuzzy logic and LINGO software. AIP Advances. https://doi.org/10.1063/5.0252654
  • Bi, Y., Sun, Z., Lu, X., Sun, Z., Liu, D., & Liu, K. (2018). Adaptive type-2 fuzzy traffic signal control with on-line optimization. Journal of Intelligent & Fuzzy Systems, 35(2), 1889–1904. https://doi.org/10.3233/JIFS-171405
  • Wen, C., Zhao, H., Li, T., & Liu, Y. (2015). Intelligent traffic signal controller based on type-2 fuzzy logic and NSGAII. Journal of Intelligent & Fuzzy Systems, 29(6), 2611–2618. https://doi.org/10.3233/IFS-151826
  • Xu, X., Su, P., Wang, F., et al. (2021). Coordinated control of dual-motor using the interval type-2 fuzzy logic in autonomous steering system of AGV. International Journal of Fuzzy Systems, 23, 1070–1086. https://doi.org/10.1007/s40815-020-00886-x
  • Amirkhani, A., Shirzadeh, M., & Molaie, M. (2022). An indirect type-2 fuzzy neural network optimized by the grasshopper algorithm for vehicle ABS controller. IEEE Access, 10, 58736–58751. https://doi.org/10.1109/ACCESS.2022.3179700
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Type-2 fuzzy logic Interval Type-2 fuzzy sets Intelligent transportation system Uncertainty handling Adaptive control Sustainable mobility

Powered by PhDFocusTM