Research Article

AI-DRIVEN PERSONALISATION IN DIGITAL MARKETING: BALANCING INNOVATION AND CONSUMER PRIVACY

by  Anna Tanyaradzwa Audrey Chingono, Chipo Talitakhumi Chakweza, Ruvimbo Salome Kanyongo, Rethabile Tlou
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 75
Published: January 2026
Authors: Anna Tanyaradzwa Audrey Chingono, Chipo Talitakhumi Chakweza, Ruvimbo Salome Kanyongo, Rethabile Tlou
10.5120/ijca2026926297
PDF

Anna Tanyaradzwa Audrey Chingono, Chipo Talitakhumi Chakweza, Ruvimbo Salome Kanyongo, Rethabile Tlou . AI-DRIVEN PERSONALISATION IN DIGITAL MARKETING: BALANCING INNOVATION AND CONSUMER PRIVACY. International Journal of Computer Applications. 187, 75 (January 2026), 68-85. DOI=10.5120/ijca2026926297

                        @article{ 10.5120/ijca2026926297,
                        author  = { Anna Tanyaradzwa Audrey Chingono,Chipo Talitakhumi Chakweza,Ruvimbo Salome Kanyongo,Rethabile Tlou },
                        title   = { AI-DRIVEN PERSONALISATION IN DIGITAL MARKETING: BALANCING INNOVATION AND CONSUMER PRIVACY },
                        journal = { International Journal of Computer Applications },
                        year    = { 2026 },
                        volume  = { 187 },
                        number  = { 75 },
                        pages   = { 68-85 },
                        doi     = { 10.5120/ijca2026926297 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2026
                        %A Anna Tanyaradzwa Audrey Chingono
                        %A Chipo Talitakhumi Chakweza
                        %A Ruvimbo Salome Kanyongo
                        %A Rethabile Tlou
                        %T AI-DRIVEN PERSONALISATION IN DIGITAL MARKETING: BALANCING INNOVATION AND CONSUMER PRIVACY%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 75
                        %P 68-85
                        %R 10.5120/ijca2026926297
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Artificial intelligence (AI)-driven personalisation is reshaping digital marketing by enabling hyper-targeted experiences, but it also intensifies privacy concerns and ethical dilemmas. This systematic review examines the interaction between AI-enabled marketing and consumer trust, algorithmic transparency, and ethical governance, drawing on 41 peer-reviewed studies published between 2014 and 2025. The review employs thematic synthesis to extract five key thematic domains: the trust-personalisation paradox, explainability in AI systems, ethical governance, consumer empowerment, and future research trajectories. Findings reveal that although AI personalisation enhances engagement and perceived relevance, it often lacks transparent mechanisms and clear ethical boundaries, thereby eroding user trust. Empirical evidence suggests that permission-based targeting, explainable AI, and consumer-controlled data frameworks are emerging as best practices, although they are rarely adopted systematically. Gaps remain in the operationalisation of ethical AI, particularly across cultural contexts and long-term behavioural outcomes. The review concludes that ethical AI marketing must prioritise user empowerment, institutionalise transparency, and position ethical governance as a strategic asset in digital engagement.

References
  • Lu, X., Wijayaratna, K., Huang, Y., & Qiu, A. (2022). AI-Enabled Opportunities and Transformation Challenges for SMEs in the Post-pandemic Era: A Review and Research Agenda. Frontiers in Public Health, 10. frontiersin. https://doi.org/10.3389/fpubh.2022.885067
  • Khan, M. N., Hasan, M. R., Hasan, M. M., Mirza, J. B., Hassan, A., Paul, R., Khan, M. N., & Nikit, N. A. (2025). The Role of AI in Digital Marketing Analytics: Enhancing Customer Segmentation and Personalization in IT Service-Based Businesses. AIJMR - Advanced International Journal of Multidisciplinary Research, 3(1). https://www.aijmr.com/research-paper.php?id=1124
  • Oluwafemi, I. O., Clement, T., Adanigbo, O. S., Gbenle, T. P., & Adekunle, B. I. (2021). A Review of Ethical Considerations in AI-Driven Marketing Analytics: Privacy, Transparency, and Consumer Trust. International Journal of Multidisciplinary Research and Growth Evaluation, 2(2), 428–435. https://doi.org/10.54660/.ijmrge.2021.2.2.428-435
  • Martin, K. D., Borah, A., & Palmatier, R. W. (2017). Data Privacy: Effects on Customer and Firm Performance. Journal of Marketing, 81(1), 36–58. https://doi.org/10.1509/jm.15.0497
  • Tkalčič, M., & Ferwerda, B. (2025). Adaptation and Personalization in Human-Centered AI. Human-Computer Interaction Series, 26(7), 493–511. https://doi.org/10.1007/978-3-031-61375-3_7
  • Ugbaja, U. S., Nwabekee, U. S., Owobu, W. O., & Abieba, O. A. (2024). Data-Driven Marketing Strategies: How AI and Visualization Improve Consumer Insights. International Journal of Advanced Multidisciplinary Research and Studies, 4(6), 1788–1804. https://doi.org/10.62225/2583049x.2024.4.6.4153
  • Aldboush, H., & Ferdous, M. (2023). Building Trust in Fintech: an Analysis of Ethical and Privacy Considerations in the Intersection of Big Data, AI, and Customer Trust. International Journal of Financial Studies, 11(3). MDPI. https://doi.org/10.3390/ijfs11030090
  • Khan, W. N., & Naseeb, S. (2024). Personal Data Protection in the Era of Big Data: Navigating Privacy Laws and Consumer Rights. Mayo Communication Journal , 1(1), 41–51. https://www.researchcorridor.org/index.php/mcj/article/view/146
  • Taddeo, M., & Floridi, L. (2021). How AI Can Be a Force for Good – An Ethical Framework to Harness the Potential of AI While Keeping Humans in Control. Ethics, Governance and Politics of Artificial Intelligence, 24(2), 91–96. https://doi.org/10.1007/978-3-030-81907-1_7
  • Kozyreva, A., Lorenz-Spreen, P., Hertwig, R., Lewandowsky, S., & Herzog, S. M. (2021). Public attitudes towards algorithmic personalization and use of personal data online: evidence from Germany, Great Britain, and the United States. Humanities and Social Sciences Communications, 8(1). https://doi.org/10.1057/s41599-021-00787-w
  • Ayub, T. (2025). Regulating AI: Balancing Innovation, Ethics, and Public Policy A Critical Analysis of AI Governance and Policy Approaches. Policy a Critical Analysis of AI Governance and Policy , 12(2). https://doi.org/10.2139/ssrn.5190225
  • Naz, H., & Kashif, M. (2024a). Artificial Intelligence and Predictive marketing: an Ethical Framework from Managers’ Perspective. Spanish Journal of Marketing - ESIC, 29(1). https://doi.org/10.1108/sjme-06-2023-0154
  • Jung, S.-U., & Shegai, V. (2023). The Impact of Digital Marketing Innovation on Firm Performance: Mediation by Marketing Capability and Moderation by Firm Size. Sustainability, 15(7), 5711. Mdpi. https://doi.org/10.3390/su15075711
  • Maheta, U., Pandya, P. R., & Patel, D. (2024). Predictive Intelligence in Action: Evaluating the Impact of AI-Powered Analytics on Digital Marketing Performance in India. AEIDA: Journal of Multidisciplinary Studies , 1(2), 17–24. https://doi.org/10.1108/JRIM-12-2020-0221
  • Berhanu, A. Y., & Libsie, M. (2025). A Framework for Multi-source Prefetching Through Adaptive Weight. ArXiv.org. https://arxiv.org/abs/2509.13604
  • Abdullah, M. S., & Hasan, R. (2023). AI-drive Insights for Product Marketing: Enhancing Customer Experience and Refining Market Segmentation. American Journal of Interdisciplinary Studies, 04(04), 80–116. https://doi.org/10.63125/pzd8m844
  • Fu, Z., Niu, X., & Maher, M. L. (2023). Deep Learning Models for Serendipity Recommendations: A Survey and New Perspectives. ACM Computing Surveys, 56(1), 1–26. https://doi.org/10.1145/3605145
  • Schoenherr, J. R., Abbas, R., Michael, K., Rivas, P., & Anderson, T. D. (2023). Designing AI Using a Human-Centered Approach: Explainability and Accuracy Toward Trustworthiness. IEEE Transactions on Technology and Society, 4(1), 9–23. https://doi.org/10.1109/tts.2023.3257627
  • Dwivedi, Y. K., Pandey, N., Currie, W., & Micu, A. (2023). Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: practices, challenges and research agenda. International Journal of Contemporary Hospitality Management, 36(1), 1–12. https://doi.org/10.1108/ijchm-05-2023-0686
  • Dehankar, P., & Das, S. (2025). Ethics in AI: Balancing Innovation with Responsibility. Smart Systems: Engineering and Managing Information for Future Success , 22(3), 125–136. https://doi.org/10.1007/978-3-031-76152-2_9
  • Zuboff, S. (2019). Surveillance Capitalism and the Challenge of Collective Action. New Labor Forum, 28(1), 10–29. https://doi.org/10.1177/1095796018819461
  • Belanche, D., Casaló, L. V., Flavián, M., & Sánchez, S. I. (2021). Understanding Influencer marketing: the Role of Congruence between influencers, Products and Consumers. Journal of Business Research, 132(1), 186–195. Sciencedirect. https://doi.org/10.1016/j.jbusres.2021.03.067
  • GDPR. (2018). General Data Protection Regulation (GDPR). GDPR. https://gdpr-info.eu/
  • Wong, R. Y., Chong, A., & Aspegren, R. C. (2023). Privacy Legislation as Business Risks: How GDPR and CCPA are Represented in Technology Companies’ Investment Risk Disclosures. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW1), 1–26. https://doi.org/10.1145/3579515
  • Cabrera, B. M., Luiz, L. E., & Teixeira, J. P. (2025). The Artificial Intelligence Act: Insights regarding its application and implications. Procedia Computer Science, 256(2), 230–237. https://doi.org/10.1016/j.procs.2025.02.116
  • Akande, O. A. (2022). Integrating Blockchain with Federated Learning for PrivacyPreserving Data Analytics Across Decentralized Governmental Health Information Systems. International Journal of Computer Applications Technology and Research, 11(12), 1–16. https://doi.org/10.7753/IJCATR1112.1025
  • Shallom, K., & Damian, I. C. (2025). Enhancing malware detection using federated learning and explainable AI for privacypreserving threat intelligence. World Journals of Advanced Research and Reviews, 81(25), 1–21. https://doi.org/10.30574/wjarr.2025.27.1.2541.
  • Nweke, L. O. (2025). Artificial Intelligence, Trust, and the Architecture of Online Identity: Security Implications in an Algorithmic Era. In The Evolving Landscape of Online Identity - Recent Studies and Insights (pp. 26–34). IntechOpen. https://www.intechopen.com/online-first/1235631
  • Villegas-Ch, W., & García-Ortiz, J. (2023). Toward a Comprehensive Framework for Ensuring Security and Privacy in Artificial Intelligence. Electronics, 12(18), 3786. https://doi.org/10.3390/electronics12183786
  • Broklyn, P., Olukemi, A., & Bell, C. (2024, July 20). AI-Driven Personalization in Digital Marketing: Effectiveness and Ethical Considerations. Ssrn.com. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4906214
  • Acquisti, A., Brandimarte, L., & Loewenstein, G. (2020). Secrets and Likes: The Drive for Privacy and the Difficulty of Achieving It in the Digital Age. Journal of Consumer Psychology, 30(4). https://doi.org/10.1002/jcpy.1191
  • Jobin, A., Ienca, M., & Vayena, E. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
  • Kairouz, P., & McMahan, H. B. (2021). Advances and Open Problems in Federated Learning. Foundations and Trends® in Machine Learning, 14(1). https://doi.org/10.1561/2200000083
  • Dwork, C., & Roth, A. (2014). The Algorithmic Foundations of Differential Privacy. Foundations and Trends® in Theoretical Computer Science, 9(3-4), 211–407. https://doi.org/10.1561/0400000042
  • Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
  • Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26(2), 13–23. https://www.jstor.org/stable/4132319
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & McGuinness, L. A. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. British Medical Journal, 372(71). https://doi.org/10.1136/bmj.n71
  • Vrontis, D., Makrides, A., Christofi, M., & Thrassou, A. (2021). Social Media Influencer marketing: a Systematic review, Integrative Framework and Future Research Agenda. International Journal of Consumer Studies, 45(4), 617–644. https://doi.org/10.1111/ijcs.12647
  • Canhoto, A. I., Keegan, B. J., & Ryzhikh, M. (2023). Snakes and Ladders: Unpacking the Personalisation-Privacy Paradox in the Context of AI-Enabled Personalisation in the Physical Retail Environment. Information Systems Frontiers, 26(26). https://doi.org/10.1007/s10796-023-10369-7
  • Hardcastle, K., Vorster, L., & Brown, D. M. (2025). Understanding Customer Responses to AI-Driven Personalized Journeys: Impacts on the Customer Experience. Journal of Advertising, 54(2), 1–20. https://doi.org/10.1080/00913367.2025.2460985
  • H. Naz and M. Kashif, “Artificial Intelligence and Predictive marketing: an Ethical Framework from Managers’ Perspective,” Spanish Journal of Marketing - ESIC, vol. 29, no. 1, Feb. 2024, doi: https://doi.org/10.1108/sjme-06-2023-0154.
  • Teepapal, T. (2025). AI-Driven Personalization: Unraveling Consumer Perceptions in Social Media Engagement. Computers in Human Behavior, 165, 108549. https://doi.org/10.1016/j.chb.2024.108549
  • Iftikhar, S. M. (2024). A Critical Review of Personalization in Digital Marketing: Psychological, Technological and Ethical Perspectives. SSRN. https://doi.org/10.2139/ssrn.4998516
  • Behera, R. K., Gunasekaran, A., Gupta, S., Kamboj, S., & Bala, P. K. (2020). Personalized Digital Marketing Recommender Engine. Journal of Retailing and Consumer Services, 53, 101799. https://doi.org/10.1016/j.jretconser.2019.03.026
  • Anjum, A., & R., Manju Priya. (2024). Impact of AI-Driven digital marketing on data privacy and consumer behavior: An SEM study. IUP Journal of Marketing Management, 23, 75–97. https://research.ebsco.com/linkprocessor/plink?id=8d9daf6e-1bf4-349b-b8ae-4a6f8c336940
  • Ozturkcan, S., & Bozdağ, A. A. (2025). Responsible AI in Marketing: AI Booing and AI Washing Cycle of AI Mistrust. International Journal of Market Research, 13(2). https://doi.org/10.1177/14707853251379285
  • Beyari, H., & Hashem, T. (2025). The Role of Artificial Intelligence in Personalizing Social Media Marketing Strategies for Enhanced Customer Experience. Behavioral Sciences, 15(5), 700–700. https://doi.org/10.3390/bs15050700
  • Adiyanto, Y. (2025). Navigating Consumer Trust in the Era of AIDriven Digital Advertising. GlobalManagement, 2(2), 5564. https://doi.org/10.70062/globalmanagement.v2i2.204
  • Kyosovska, K. (2024). Artificial Intelligence and Marketing. Ethical Dilemmas in the Bulgarian Professional Environment. Postmodernism Problems, 14(3), 374–397. https://doi.org/10.46324/pmp2403374
  • Saura, J. R., Škare, V., & Dosen, D. O. (2024). Is AI-based Digital Marketing ethical? Assessing a New Data Privacy Paradox. Journal of Innovation & Knowledge, 9(4), 100597. https://doi.org/10.1016/j.jik.2024.100597
  • Bünte, C. (2023). Artificial Intelligence: The Revolution in Marketing. Management for Professionals, 45(23), 395–408. https://doi.org/10.1007/978-3-031-20040-3_25
  • Gupta, S., Sharma, L., & Mathew, R. (2025). Balancing Personalization and Privacy in AI-Enabled Marketing Consumer Trust, Regulatory Impact, and Strategic Implications – A Qualitative Study using NVivo. Advances in Consumer ResearchSahil, 2(5), 1–12. https://acr-journal.com/article/download/pdf/1633/ [53 Cooper, D. A., Yalcin, T., Nistor, C., Macrini, M., & Pehlivan, E. (2022). Privacy considerations for online advertising: a stakeholder’s perspective to programmatic advertising. Journal of Consumer Marketing, 40(2). https://doi.org/10.1108/jcm-04-2021-4577
  • Martin, K. D., & Murphy, P. E. (2017). The Role of Data Privacy in Marketing. Journal of the Academy of Marketing Science, 45(2), 135–155. https://doi.org/10.1007/s11747-016-0495-4
  • Ananny, M., & Crawford, K. (2018). Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability. New Media & Society, 20(3). https://doi.org/10.1177/1461444816676645
  • Eid, M. A. H., Hashesh, M. A., Sharabati, A.-A. A., Khraiwish, A., Al-Haddad, S., & Abusaimeh, H. (2024, April 11). Conceptualizing Ethical AI-Enabled Marketing: Current State and Agenda for Future Research. Preprints.org. https://doi.org/10.20944/preprints202404.0786.v1
  • Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97–121. https://doi.org/10.1509/jm.15.0413
  • Grewal, D., Hulland, J., Kopalle, P. K., & Karahanna, E. (2020). The future of technology and marketing: A multidisciplinary perspective. Journal of the Academy of Marketing Science, 48(1), 1–8. springer. https://link.springer.com/article/10.1007/s11747-019-00711-4
  • Zhang, L., & Hur, C. (2025). The Impact of Generative AI Images on Consumer Attitudes in Advertising. Administrative Sciences, 15(10), 395–395. https://doi.org/10.3390/admsci15100395
  • Qadri, U. A., Ahmed, M., & Waqas, M. (2025). When and how AI personalization drives sustainable purchases: The roles of relevance, privacy, and transparency in eco-friendly advertising. Journal of Retailing and Consumer Services, 89(12), 104592–104592. https://doi.org/10.1016/j.jretconser.2025.104592
  • Khalid, M. I. (2025). Rethinking Digital Marketing Ethics in the Metaverse: A Framework for Responsible Engagement. Lecture Notes in Computer Science, 362–377. https://doi.org/10.1007/978-3-032-06164-5_26
  • Pervaiz, K., & Bawa, S. S. (2025). The Impact of Artificial Intelligence-Driven Digital Marketing Strategies on Pharmaceutical Consumer Behavior. Communications in Computer and Information Science, 91–105. https://doi.org/10.1007/978-3-031-93601-2_6
  • Mollay, M., Sharma, D., Anawade, P., & Parlikar, C. (2025). The Impact of Privacy Regulations on Digital Marketing Practices: A Descriptive Study. Lecture Notes in Networks and Systems, 81–90. https://doi.org/10.1007/978-981-96-7520-3_8
  • Mollay, M. H., Sharma, D., Anawade, P., Rafique, A. A. A., & Akpabio, E. (2025). Trust in Artificial Intelligence Marketing: How AI-Powered Chatbots and Algorithms Influence Consumer Trust in Automated Systems. Lecture Notes in Electrical Engineering, 13(2), 365–382. https://doi.org/10.1007/978-981-96-8283-6_24
  • Mainkar, S. D. (2025). Role of Artificial Intelligence in Customer Experience Enhancement: Present Scenario and Future Prospects. Lecture Notes in Networks and Systems, 4(4), 451–478. https://doi.org/10.1007/978-981-96-6053-7_30
  • Diwanji, V. S. (2026). Should your brand hire virtual influencers? How realism and gender presentation shape trust and purchase intentions. Journal of Retailing and Consumer Services, 88, 104491. https://doi.org/10.1016/j.jretconser.2025.104491
  • Said, N. A. (2024). Does data privacy influence digital marketing? The mediating role of AI-driven trust: An empirical study of Zain Telecom company in Jordan. International Journal of Data and Network Science, 9(1), 187–200. https://doi.org/10.5267/j.ijdns.2024.8.023
  • Turki, H. (2025). AI-powered personalization in e-commerce: Governance, consumer behavior, and exploratory insights from big data analytics. Technology in Society, 83(23), 103033. https://doi.org/10.1016/j.techsoc.2025.103033
  • Junaid, M. (2025). The Convergence of the Metaverse, Artificial Intelligence, and Marketing. Human Systems Management, 44(6). https://doi.org/10.1177/01672533251331502
  • Wahid, R., Mero, J., & Ritala, P. (2025). Technology-enabled democratization: Impact of generative AI on content marketing agencies. Industrial Marketing Management, 131(24), 1–16. https://doi.org/10.1016/j.indmarman.2025.09.007
  • Orea-Giner, A., Fusté-Forné, F., & Soliman, M. (2025). How do tourists perceive green customer-love service in restaurants? A qualitative exploration of AI and human collaboration. International Journal of Hospitality Management, 131, 104300. https://doi.org/10.1016/j.ijhm.2025.104300
  • Mahdizadeh, B. M., Hosseini, K., & Kashani, N. (2025). Bibliometric Analysis of Customer Experience and Artificial Intelligence. Scientometrics Research Journal, 11(2), -. https://doi.org/10.22070/rsci.2025.19066.1729
  • Sahoo, S. K., Fabus, J., Garbarova, M., Kvasnicova-Galovicova, T., Pattnaik, L., & Sahoo, S. (2025). Devising AI-Based Customer Engagement to Foster Positive Attitude Towards Green Purchase Intentions. Sustainability, 17(20), 9282–9282. https://doi.org/10.3390/su17209282
  • Sâsâeac, Ș.-M., Bertea, P. E., Jelea, A. R., Manolică, A., & Roman, C. T. (2025). eWOM vs. aWOM: AI Powered Word of Mouth and its Impact on Consumer Decision Making in Tourism. Scientific Annals of Economics and Business, 72(3), 489–517. https://doi.org/10.47743/saeb-2025-0026
  • Sahut, J. M., & Laroche, M. (2025). Using artificial intelligence (AI) to enhance customer experience and to develop strategic marketing: An integrative synthesis. Computers in Human Behavior, 170(10), 108684–108684. https://doi.org/10.1016/j.chb.2025.108684
  • Lim, S. (Edward), & Kim, M. (2025). AI-powered personalized recommendations and pricing: Moderating effects of ethical AI and consumer empowerment. International Journal of Hospitality Management, 130(12), 104259. https://doi.org/10.1016/j.ijhm.2025.104259
  • Zhou, T., & Li, S. (2024). Examining user switching intention between generative AI platforms: A push-pull-mooring perspective. Information Development. https://doi.org/10.1177/02666669241306735
  • Wang, L., Jing, Z., Li, H., Li, C., & Su, Y. (2025). The Influence of AI-Driven Personalization in Social Media Marketing on Consumer Purchase Decisions and Behavior. International Journal of Accounting and Economics Studies, 12(5), 438–444. https://doi.org/10.14419/dcggbj32
  • Vongpanich, K., Boonyapitaktumrong, K., Veerathanusvet, C., & Kerdvibulvech, C. (2025). The Impact of Al on Enhancing Productivity in Digital Marketing Production. 62–66. https://doi.org/10.1145/3726101.3726112.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

AI Personalisation Predictive Analytics Algorithmic Transparency Federated Learning Consumer Trust

Powered by PhDFocusTM