Research Article

Implementation of Network Analysis using Markov Chains in Python

by  Ahmad Farhan Alshammari
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 75
Published: January 2026
Authors: Ahmad Farhan Alshammari
10.5120/ijca2026926300
PDF

Ahmad Farhan Alshammari . Implementation of Network Analysis using Markov Chains in Python. International Journal of Computer Applications. 187, 75 (January 2026), 86-93. DOI=10.5120/ijca2026926300

                        @article{ 10.5120/ijca2026926300,
                        author  = { Ahmad Farhan Alshammari },
                        title   = { Implementation of Network Analysis using Markov Chains in Python },
                        journal = { International Journal of Computer Applications },
                        year    = { 2026 },
                        volume  = { 187 },
                        number  = { 75 },
                        pages   = { 86-93 },
                        doi     = { 10.5120/ijca2026926300 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2026
                        %A Ahmad Farhan Alshammari
                        %T Implementation of Network Analysis using Markov Chains in Python%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 75
                        %P 86-93
                        %R 10.5120/ijca2026926300
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The goal of this research is to implement network analysis using Markov chains in Python. Networks exist almost everywhere in life. There are networks of computers, people, articles, posts, etc. Network analysis is used to understand the structure, function, and performance of the network. Markov chains method is used to predict the future state based on the present state and not on the previous states. The basic steps of network analysis using Markov chains are explained: defining network (states, transition matrix, and distribution vector), performing matrix multiplication (computing stationary distribution vector and computing stationary transition vector), performing random walk (computing stationary distribution vector), comparing results, and plotting charts. The developed program was tested on an experimental data. The program has successfully performed the basic steps of network analysis using Markov chains and provided the required results.

References
  • Sammut, C., & Webb, G. I. (2011). "Encyclopedia of Machine Learning". Springer.
  • Jung, A. (2022). "Machine Learning: The Basics". Springer.
  • Kubat, M. (2021). "An Introduction to Machine Learning". Springer.
  • Li, H. (2023). "Machine Learning Methods". Springer.
  • Zollanvari, A. (2023). " Machine Learning with Python". Springer.
  • Chopra, D., & Khurana, R. (2023). "Introduction to Machine Learning with Python". Bentham Science Publishers.
  • Müller, A. C., & Guido, S. (2016). "Introduction to Machine Learning with Python: A Guide for Data Scientists". O'Reilly Media.
  • Raschka, S. (2015). "Python Machine Learning". Packt Publishing.
  • Forsyth, D. (2019). "Applied Machine Learning". Springer.
  • Sarkar, D., Bali, R., & Sharma, T. (2018). "Practical Machine Learning with Python". Apress.
  • Bonaccorso, G. (2018). "Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning". Packt Publishing.
  • Igual, L., & Seguí, S. (2017). "Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications". Springer.
  • VanderPlas, J. (2017). "Python Data Science Handbook: Essential Tools for Working with Data". O'Reilly Media.
  • Muddana, A., & Vinayakam, S. (2024). "Python for Data Science". Springer.
  • Unpingco, J. (2021). "Python Programming for Data Analysis". Springer.
  • Zelle, J. (2017). "Python Programming: An Introduction to Computer Science". Franklin, Beedle & Associates.
  • Xanthidis, D., Manolas, C., Xanthidou, O. K., & Wang, H. I. (2022). "Handbook of Computer Programming with Python". CRC Press.
  • Chun, W. (2001). "Core Python Programming". Prentice Hall Professional.
  • Padmanabhan, T. (2016). "Programming with Python". Springer.
  • Beazley, D. & Jones, B. (2013). "Python Cookbook: Recipes for Mastering Python 3". O'Reilly Media.
  • Newman, M. (2018). "Networks: An Introduction". Oxford University Press.
  • Estrada, E. & Knight, P. (2015). "A First Course in Network Theory". Oxford University Press.
  • Menczer, F., Fortunato, S., & Davis, C. A. (2020). "A First Course in Network Science". Cambridge University Press.
  • Lewis, T. (2009). "Network Science: Theory and Applications". John Wiley & Sons.
  • Barabasi, A. (2016). "Network Science". Cambridge University Press
  • Knickerbocker, D. (2023). "Network Science with Python". Packt Publishing.
  • Norris, J. (2009). "Markov Chains". Cambridge University Press.
  • Tolver, A. (2016). "An Introduction to Markov Chains". Department of Mathematical Sciences, University of Copenhagen.
  • Weber, R. (2011). "Markov Chains". Department of Pure Mathematics and Mathematical Statistics. University of Cambridge.
  • Gagniuc, P. (2017). "Markov Chains: From Theory to Implementation and Experimentation". John Wiley & Sons.
  • Ching, W., Huang, S., Ng, M., & Siu, T. (2013). "Markov Chains: Models, Algorithms, and Applications". Springer.
  • Privault, N. (2018). "Understanding Markov Chains: Examples and Applications". Springer.
  • Ankan, A., & Panda, A. (2018). "Hands-On Markov Models with Python". Packt Publishing.
  • Grinstead, C., & Snell, J. (1997). "Introduction to Probability". American Mathematical Society.
  • Python: http://www.python.org
  • Numpy: http://www.numpy.org
  • Pandas: http://pandas.pydata.org
  • Matplotlib: http://www. matplotlib.org
  • Seaborn: http://seaborn.pydata.org
  • SciPy: http://scipy.org
  • NLTK: http://www.nltk.org
  • SK Learn: http://scikit-learn.org
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Computer Science Artificial Intelligence Machine Learning Network Analysis Markov Chains Python Programming

Powered by PhDFocusTM