Research Article

Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts

by  T.Ramachandran, T.Priya, M.Parimala
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 43 - Issue 22
Published: April 2012
Authors: T.Ramachandran, T.Priya, M.Parimala
10.5120/6402-8392
PDF

T.Ramachandran, T.Priya, M.Parimala . Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts. International Journal of Computer Applications. 43, 22 (April 2012), 17-22. DOI=10.5120/6402-8392

                        @article{ 10.5120/6402-8392,
                        author  = { T.Ramachandran,T.Priya,M.Parimala },
                        title   = { Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts },
                        journal = { International Journal of Computer Applications },
                        year    = { 2012 },
                        volume  = { 43 },
                        number  = { 22 },
                        pages   = { 17-22 },
                        doi     = { 10.5120/6402-8392 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2012
                        %A T.Ramachandran
                        %A T.Priya
                        %A M.Parimala
                        %T Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts%T 
                        %J International Journal of Computer Applications
                        %V 43
                        %N 22
                        %P 17-22
                        %R 10.5120/6402-8392
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we introduce the concept of Anti fuzzy T-ideals of TM-algebras, lower level cuts of a fuzzy set, lower level T-ideal and prove some results . We show that a fuzzy subset of a TM-algebra is a T-ideal if and only if the complement of this fuzzy subset is an anti fuzzy T-ideal. Also we discussed few results of T-ideal of TM-algebra under homomorphism as well as anti homomorphism . Cartesian product of Anti fuzzy T-ideal also discussed.

References
  • Ahn S. S and H. D. Lee , Fuzzy subalgebras of BG-algebras, Commun. korean math Soc. 19 (2004) 243-251.
  • Biswas. R , Fuzzy subgroups and Anti Fuzzy subgroups , Fuzzy sets and systems , 35 (1990),121-124.
  • Dudek W. A and Y. B. Jun, Fuzzification of ideals in BCC-algebras , Glasnik Matematicki,36 ,(2001) , 127-138.
  • Hu Q. P. and X. Li , On BCH-algebras, Mathematics Seminar notes 11 (1983) , 313-320.
  • Iseki . K and S. Tanaka , An introduction to the theory of BCK – algebras , Math Japonica 23 (1978), 1- 20 .
  • Iseki . K , On BCI-algebras , Math. Seminar Notes 8 (1980), 125-130.
  • Megalai . K and A. Tamilarasi , classification of TM-algebra , IJCA Special issue on "Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications " CASCT, 2010.
  • Megalai . K and A. Tamilarasi , Fuzzy Subalgebras and Fuzzy T- ideals in TM-algebra ,Journal of Mathematics and Statistics 7(2) , 2011, 107-111.
  • Muthuraj . R , P. M. Sitharselvam , M. S. Muthuraman , Anti Q fuzzy group and its lower level subgroups, IJCA, 3 (2010) ,16-20.
  • Muthuraj . R ,M. Sridharan, P. M. Sitharselvam, M. S. Muthuraman , Anti Q- Fuzzy BG-ideals in BG-algebra, IJCA, 4 , (2010), 27-31.
  • Neggers. J , S. S. Ahn and H. S. Kim , On Q-algebras, IJMMS 27 (2001) , 749-757.
  • Neggers. J and H. S. Kim , On B-algebras , math,vensik,54 (2002), 21-29.
  • Neggers. J and H. S. Kim , On d-algebras , Math,slovaca, 49 (1999) , 19-26.
  • Samy M. Mostafa ,Mokthar A. Abdel Naby and Osama R. Elgendy , Journal of American Sciences, 7(9) , (2011), 17-21.
  • Zadeh. L. A. , Fuzzy sets , Inform. control,8 (1965) , 338 -353.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Tm-algebra Anti Fuzzy Subalgebra Fuzzy T- Ideal Anti Fuzzy T-ideal Anti Homomorphism Cartesian Product Lower Level Cuts. Ams Subject Classification (2000): 20n25 03e72 03f055 06f35 03g25

Powered by PhDFocusTM