Research Article

Entanglement Computation in Atoms and Molecules

by  Stefano Siccardi, Rita Pizzi, Giuliano Benenti
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 60 - Issue 1
Published: December 2012
Authors: Stefano Siccardi, Rita Pizzi, Giuliano Benenti
10.5120/9660-4081
PDF

Stefano Siccardi, Rita Pizzi, Giuliano Benenti . Entanglement Computation in Atoms and Molecules. International Journal of Computer Applications. 60, 1 (December 2012), 43-48. DOI=10.5120/9660-4081

                        @article{ 10.5120/9660-4081,
                        author  = { Stefano Siccardi,Rita Pizzi,Giuliano Benenti },
                        title   = { Entanglement Computation in Atoms and Molecules },
                        journal = { International Journal of Computer Applications },
                        year    = { 2012 },
                        volume  = { 60 },
                        number  = { 1 },
                        pages   = { 43-48 },
                        doi     = { 10.5120/9660-4081 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2012
                        %A Stefano Siccardi
                        %A Rita Pizzi
                        %A Giuliano Benenti
                        %T Entanglement Computation in Atoms and Molecules%T 
                        %J International Journal of Computer Applications
                        %V 60
                        %N 1
                        %P 43-48
                        %R 10.5120/9660-4081
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a method for computing entanglement of electrons in atoms and molecules is described. The importance of entanglement computation for Quantum Computers and for Biology is highlighted and the existing models' pros and cons are illustrated. A description of the algorithms follows, with some considerations about the execution times and how they scale increasing the system's Hilbert space dimension.

References
  • G. E. Moore (1965); Cramming more components onto integrated circuits Electronics, 38, N. 8
  • F. L. Carter (1987); Molecular electronic devices, Dekker Inc.
  • G. Benenti, G. Casati, G. Strini (2007); Principles of quantum computation and information, vol. I-II, World Scientific
  • G. Benenti, G. Strini (2007); A bird's eye view of quantum computers arXiv:quant-ph/0703105, Quantum Biosystems 1, 21
  • I. Buluta, S. Ashhab, F. Nori (2011); Natural and artificial atoms for quantum computation Reports on Progress in Physics, 74, p. 104401
  • G. S. Engel, T. R. Calhoun, E. L. Read1 T-K. Ahn, T. Manal, Y-C. Cheng, R. E. Blankenship, G. R. Fleming (2007); Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems Nature, 446, p. 782
  • M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik (2008); Environment-assisted quantum walks in photosynthetic energy transfer Journal of Chemical Physics, 129, p. 174106
  • M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley (2010); Quantum entanglement in photosynthetic light harvesting complexes Nature Physics, 6, 462 (2010).
  • T. Scholak, F. de Melo, T. Wellens, F. Mintert1, A. Buchleitner (2011); Efficient and coherent excitation transfer across disordered molecular networks Physical Review E, 83, p. 021912
  • M. Weissbluth (1978), Atoms and molecules, Academic Press
  • J. D. Graybeal (1993); Molecular spectroscopy, McGraw-Hill
  • G. Benenti, S. Siccardi, G. Strini (2012); Entanglement in Helium arXiv:quant-ph/1204. 6667
  • R. Blatt, D. Wineland (2008); Entangled states of trapped atomic ions Nature, 453, p. 1008
  • I. Bloch (2008); Quantum coherence and entanglement with ultracold atoms in optical lattices Nature, 453, p. 1016
  • M. Saffman, T. G. Walker, K. Molmer (2010); Quantum information with Rydberg atoms Reviews of Modern Physics 82, p. 2313
  • A. Micheli, G. K. Brennen, P. Zoller (2006); A toolbox for latticespin models with polar molecules Nature Physics 2, p. 341
  • K. B. Whaley, M. Sarovar, A Ishizaki (2011); Quantum entanglement phenomena in photosynthetic light harvesting complexes, Procedia Chemistry, 3, p. 152
  • C. Amovilli, N. H. March (2003); Exact density matrix for a two-electron model atom and approximate proposals for realistic two-electron systems Phisical Review A, 67, p. 22509
  • C. Amovilli, N. H. March (2004); Quantum information: Jaynes and Shannon entropies in a two-electron entangled artificial atom Physical Review A, 69, p. 54302
  • M. Moshinsky (1968) How good is the Hartree-Fock approximation? The American Journal of Physics, 36, p. 52
  • A. Nagy (2006); Fisher information in a two-electron entangled artificial atom Chemical Physics Letters, 425, p. 154
  • N. H. March, A. Cabo, F. Claro, G. G. N. Angilella (2008) Proposed definitions of the correlation energy density from a Hartree-Fock starting point: the two-electron Moshinsky model atom as an exactly solvable model Physical Review A, 77, p. 042504 (2008)
  • R. J. Yanez, A. R. Plastino, J. S. Dehesa (2010) Quantum entanglement in a soluble two-electron model atom European Physics Journal D, 56, p. 14
  • O. Osenda, P. Serra (2007) Scaling of the von Neumann entropy in a two-electron system near the ionization threshold Physical Review A, 75, p. 042331
  • O. Osenda, P. Serra (2008) Excited state entanglement on a two-electron system near the ionization threshold Journal of Physics B, 41, p. 065502
  • J. S. Dehesa, T. Koga, R. J. Yanez, A. R. Plastino, and R. O. Esquivel (2012); Quantum entanglement in helium Journal of Physics B 45, p. 015504
  • R. Daudel, G. Leroy, D. Peters, M. Sana, (1983) Quantum Chemistry, Wiley
  • Y. Saad (2011); Numerical methods for large eigenvalue problems SIAM Philadelphia 2011.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Quantum entanglement computation algorithms

Powered by PhDFocusTM