Research Article

Existence Results for Fractional Order Mixed Type Functional Integro-differential Equations with Impulses

by  R. Murugesu, S. Dhanalakshmi
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 73 - Issue 17
Published: July 2013
Authors: R. Murugesu, S. Dhanalakshmi
10.5120/12831-9985
PDF

R. Murugesu, S. Dhanalakshmi . Existence Results for Fractional Order Mixed Type Functional Integro-differential Equations with Impulses. International Journal of Computer Applications. 73, 17 (July 2013), 5-10. DOI=10.5120/12831-9985

                        @article{ 10.5120/12831-9985,
                        author  = { R. Murugesu,S. Dhanalakshmi },
                        title   = { Existence Results for Fractional Order Mixed Type Functional Integro-differential Equations with Impulses },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 73 },
                        number  = { 17 },
                        pages   = { 5-10 },
                        doi     = { 10.5120/12831-9985 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A R. Murugesu
                        %A S. Dhanalakshmi
                        %T Existence Results for Fractional Order Mixed Type Functional Integro-differential Equations with Impulses%T 
                        %J International Journal of Computer Applications
                        %V 73
                        %N 17
                        %P 5-10
                        %R 10.5120/12831-9985
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we prove the existence of mild solutions for the semilinear fractional order functional of Volterra-Fredholm type differential equations with impulses in a Banach space. The results are obtained by using the theory of fractional calculus, the analytic semigroup theory of linear operators and the fixed point techniques.

References
  • A. Anguraj and M. Mallika Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electron. J. Differ. Equ. 2005(2005), 111, 1-8.
  • A. Anguraj, M. Mallika Arjunan and E. Hernandez, Existence results for impulsive neutral functional differential equations with state dependent delay, Appl. Anal. , 26(7)(2007), 861-872.
  • K. Balachandran, S. Kiruthika and J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simul. , (2010).
  • K. Balachandran, D. G. Park and S. M. Anthoni, Existence of solutions of abstract nonlinear second order neutral functional integrodifferential equations, Comput. Math. Appl. 46(2003), 1313.
  • K. Balachandran, J. Y. Park and M. Chandrasekaran, Nonlocal Cauchy problem for delay integrodifferential equations of Sobolov type in Banach spaces, Appl. Math. Lett. 15(7)(2002), 845-854.
  • E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph. D. Thesis, Eindhoven University of Technology, 2001.
  • M. Benchora, J. Henderson and S. K. Ntouyas, Impulsive differential equations and inclusions, Hindawi publishing corporation, Newyork, 2006.
  • M. Benchora, BA. Slimani, Existence and Uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differ. Equ. , 2009(10), 1-11.
  • Y. K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal. , Hybrid Syst. , 2(1)(2008), 209-218.
  • Y. K. Chang, V. Kavitha and M. Mallika Arjunan, Existence results for impulsive neutral differential and integrodifferential equations with nonlocal conditions via fractional operators, Nonlinear Anal. , Hybrid Syst. , 4(1)(2010), 32-43.
  • J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equations, 2011(2011).
  • D. Delbosco, L. Rodino, Existence and uniqueness for a fractional differential equation, J. Math. Anal. Appl. , 204(1996), 609-625.
  • M. B. Dhakne and S. D. Kender, On abstract Nonlinear Mixed Volterra-Fredholm Integrodifferential equations, Comm. Appl. Nonlinear Anal. , 13(4), (2006), 101-112.
  • T. Diagana, G. M. Mophou and G. M. Guerekata, On the existence of mild solutions to some semilinear fractional integrodifferential equations, Electron. J. Qual. Theory Differ. Equ. , 58(2010), 1-17.
  • A. Granas, J. Dugundji, Fixed Point Theory, Springer- Verlag, New York, 2003.
  • Heping Jiang, Existence results for fractional order functional differential equations with impulse, Comput. Math. Appl. , 64(2012), 3477-3483.
  • JinRong Wang, Michal Feckan, Yong Zhou. On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. , 8(2011), 345-361.
  • JinRong Wang, Yong Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. , RWA 12(2011), 262-272.
  • JinRong Wang, Yong Zhou, Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear Anal. , TMA 74(2011), 5929-5942.
  • V. Kavitha, M. Mallika Arjunan and C. Ravichandran, Existence results for impulsive systems with nonlocal conditions in Banach Spaces, J. Nonlinear Sci. Appl. 4(2)(2011), 138-151.
  • A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, [in:]North Holland Math. stud. , vol. 204, Elsevier Science, 2006.
  • V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. 69(2008), 3337-3343.
  • V. Lakshmikantham, A. S. Vastala, Basic theory of fractional differential equations, Nonlinear Anal. 69(2008), 2677-2682
  • V. Lakshmikantham, J. Vasundhara Devi, Theory of fractional differential equations in Banach Spaces, Eur. J. Pure Appl. Math. , 1(2008), 38-45.
  • K. S. Miller, B. Ross, An introduction to the Fractional Calculus and Differential equations, JohnWiley, New York, 1993.
  • G. M. Mophou, G. M. N'Gurerekata, Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79(2009), 315-322.
  • G. M. Mophou, Existence and Uniqueness of mild solutions of mild solution to impulsive fractional differential equations, Nonlinear Anal. , 72(2010), 1604- 1615.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • H. L. Tidke and M. B. Dhakne, Existence of solutions for nonlinear mixed type integrodifferential equation of second order, Surv. Math. Appl. 5(2010), 61-72.
  • J. Wang and W. Wei, A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces, Results Math. , 58(2010), 379-397.
  • Xiao-Bao Shu, Yongzeng Lai, Yuming Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal. , TMA (74)(2011), 2003-2011.
  • Yong Zhou, Existence and Uniqueness of fractional functional differential equations with unbounded delay, Int. J. Dyn. Syst. Differ. Equ. , 1(2008), 239-244.
  • Yong Zhou, Feng Jiao, Jing Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal. , TMA 71(2009), 3249- 3256.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Impulsive conditions Fractional differential equations Fixed point theorems

Powered by PhDFocusTM