Research Article

Article:Survey on Segmentation Methods for Locating Masses in a Mammogram Image

by  Prof. Samir Kumar Bandyopadhyay
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 9 - Issue 11
Published: November 2010
Authors: Prof. Samir Kumar Bandyopadhyay
10.5120/1429-1926
PDF

Prof. Samir Kumar Bandyopadhyay . Article:Survey on Segmentation Methods for Locating Masses in a Mammogram Image. International Journal of Computer Applications. 9, 11 (November 2010), 25-28. DOI=10.5120/1429-1926

                        @article{ 10.5120/1429-1926,
                        author  = { Prof. Samir Kumar Bandyopadhyay },
                        title   = { Article:Survey on Segmentation Methods for Locating Masses in a Mammogram Image },
                        journal = { International Journal of Computer Applications },
                        year    = { 2010 },
                        volume  = { 9 },
                        number  = { 11 },
                        pages   = { 25-28 },
                        doi     = { 10.5120/1429-1926 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2010
                        %A Prof. Samir Kumar Bandyopadhyay
                        %T Article:Survey on Segmentation Methods for Locating Masses in a Mammogram Image%T 
                        %J International Journal of Computer Applications
                        %V 9
                        %N 11
                        %P 25-28
                        %R 10.5120/1429-1926
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

A digital mammogram generally detects varying degrees of breast cancer such as clustered microcalcifications, speculated lesions, circumscribed masses, ill-defined masses, and architectural distortions. Many methods of analysing digital mammograms have been recently examined and yielded varied success.

References
  • Sampat, M.P., Markey, M.K., Bovik, A.C.: Computer-Aided Detection and Diagnosis in Mammography. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing. Elsevier Academic Press, Amsterdam (2005)
  • Cheng, H.D., Shi, X.J., Min, R., Hu, L.M., Cai, X.P., Du, H.N.: Approaches for Automated Detection and Classification of Masses in Mammograms. Pattern Recognition 39(4), 646–668 (2006)
  • Brzakovic, D., Luo, X.M., Brzakovic, P.: An approach to automated detection of tumors in mammograms. IEEE Transactions on Medical Imaging 9(3), 233–241 (1990)
  • Li, H.D., Kallergi, M., Clarke, L.P., Jain, V.K., Clark, R.A.: Markov Random Field for Tumor Detection in Digital Mammography. IEEE Transactions on Medical Imaging 14(3), 565–576 (1995)
  • Li, L.H., Qian, W., Clarke, L.P., Clark, R.A., Thomas, J.: Improving Mass Detection by Adaptive and Multi-Scale Processing in Digitized Mammograms. Proceedings of SPIE—The International Society for Optical Engineering 3661 1, 490–498 (1999)
  • Székely, N., Tóth, N., Pataki, B.: A Hybrid System for Detecting Masses in Mammographic Images. IEEE Transactions on Instrumentation and Measurement 55(3), 944–951 (2006)
  • Zheng, B., Mello-Thoms, C., Wang, X.H., Gur, D.: Improvement of Visual Similarity of Similar Breast Masses Selected by Computer-Aided Diagnosis Schemes. In: 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2007, April 12-15, pp. 516–519 (2007)
  • Pappas, T.N.: An Adaptive Clustering Algorithm for Image Segmentation. IEEE Transactions on Signal Processing 40(4), 901–914 (1992)
  • Sahiner, B., Hadjiiski, L.M., Chan, H.P., Paramagul, C., Nees, A., Helvie, M., Shi, J.: Concordance of Computer-Extracted Image Features with BI-RADS Descriptors for Mammographic Mass Margin. In: Giger, M.L., Karssemeijer, N. (eds.) Proc. of SPIE Medical Imaging 2008: Computer-Aided Diagnosis, vol. 6915 (2008)
  • Rangayyan, R.M.: Biomedical Image Analysis. CRC Press LLC, Boca Raton (2005)
  • Fauci, F., Bagnasco, S., Bellotti, R., Cascio, D., Cheran, S.C., De Carlo, F., De Nunzio, G., Fantacci, M.E., Forni, G., Lauria, A., Torres, E.L., Magro, R., Masala, G.L., Oliva, P., Quarta, M., Raso, G., Retico, A., Tangaro, S.: Mammogram Segmentation by Contour Searching and Massive Lesion Classification with Neural Network. In: 2004 IEEE Nuclear Science Symposium Conference Record, Rome, Italy, October 16–22, vol. 5, pp. 2695–2699 (2004)
  • Petrick, N., Chan, H.P., Sahiner, B., Wei, D.: An Adaptive Density Weighted Contrast Enhancement Filter for Mammographic Breast Mass Detection. IEEE Transactions on Medical Imaging 15(1), 59–67 (1996)
  • Zou, F., Zheng, Y., Zhou, Z., Agyepong, K.: Gradient Vector Flow Field and Mass Region Extraction in Digital Mammograms. In: 21st IEEE International Symposium on Computer-Based Medical Systems, CMBS 2008, Jyvaskyla, June 17-19, pp. 41– 43 (2008)
  • Ferreira, A.A., Nascimento Jr., F., Tsang, I.R., Cavalcanti, G.D.C., Ludermir, T.B., de Aquino, R.R.B.: Analysis of Mammogram Using Self-Organizing Neural Networks Based on Spatial Isomorphism. In: Proceedings of International Joint Conference on Neural Networks, IJCNN 2007, Orlando, Florida, USA, August 12-17, pp. 1796–1801 (2007)
  • Yuan, Y., Giger, M.L., Li, H., Sennett, C.: Correlative Feature Analysis of FFDM Images. In: Giger, M.L., Karssemeijer, N. (eds.) Proc. of SPIE Medical Imaging 2008: Computer-Aided Diagnosis, vol. 6915 (2008)
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Segmentation Methods Locating Masses Mammogram Image

Powered by PhDFocusTM